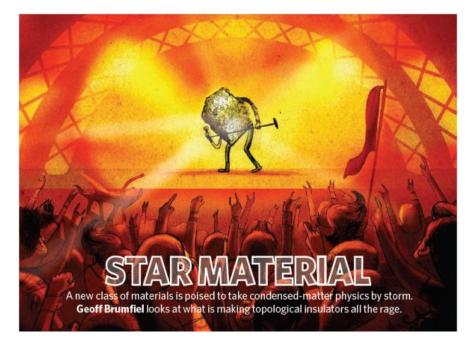
2010 7/22-24 Matsuda Lab. Seminar

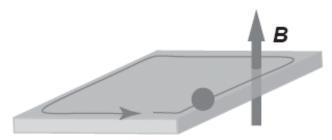
Introduction of topological insulators



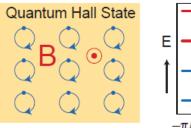
Kyoto University Sho Tonegawa

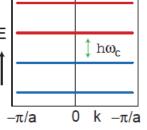
Quantum Hall effect(QHE)

• Integer Quantum Hall effect (IQHE)



Strong magnetic field Landau Quantization





Quantization of Hall conductance

$$\sigma_{xy} = n \frac{e^2}{h}$$
 n: integer

Quantization is incredibly precise.($\sim 10^{-8}$ order)

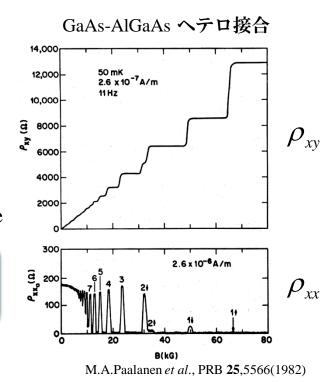
$$R_{K} = \frac{h}{e^{2}} = 25812.807\Omega$$

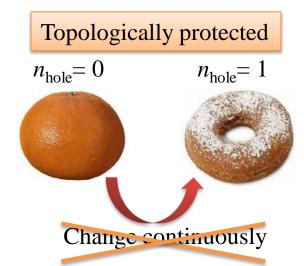
Protected by **topological number** (Chern number)

$$n = \cdots - 2, -1, 0, 1, 2, \cdots$$

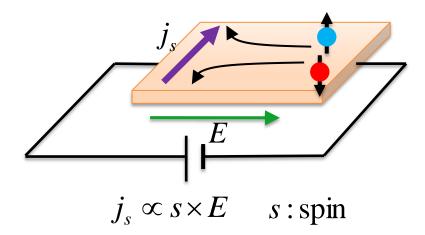
Discrete invariant can't be changed continuously.

Strong against non-magnetic impurity.



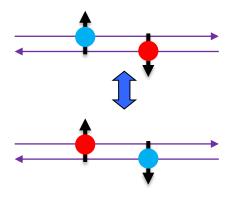


Spin Hall effect(SHE)



Spin current *j*_s is induced by spin-orbit interaction.

 j_s : even under time-reversal



Nonzero in nonmagnetic materials Magnetic field is not needed.

• Spin-orbit coupling

(spin-dependent) effective magnetic field

• Spin current *j*_s

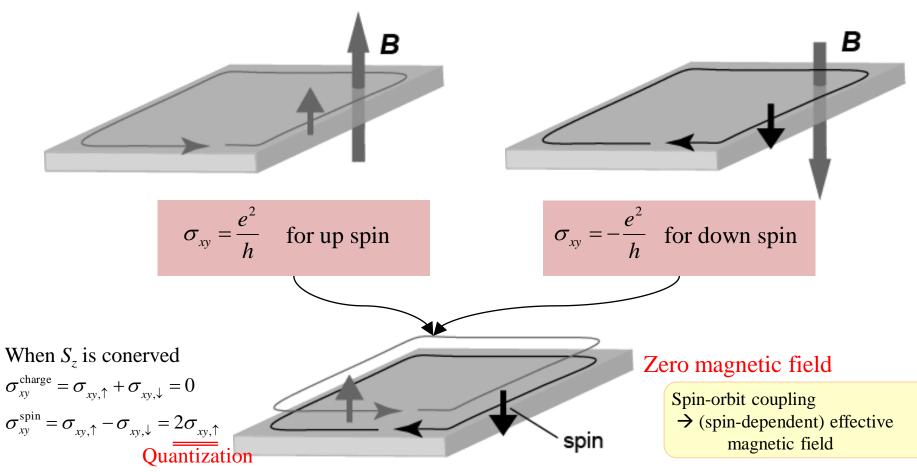
 $\sigma_{xy}^{\text{charge}} = \sigma_{xy,\uparrow} + \sigma_{xy,\downarrow} = 0 \quad \Longrightarrow \quad \text{Net charge current} = 0$ $\sigma_{xy}^{\text{spin}} = \sigma_{xy,\uparrow} - \sigma_{xy,\downarrow} = 2\sigma_{xy,\uparrow}$

Quantum Spin Hall effect (QSH)

• gapless edge states -- carry spin current

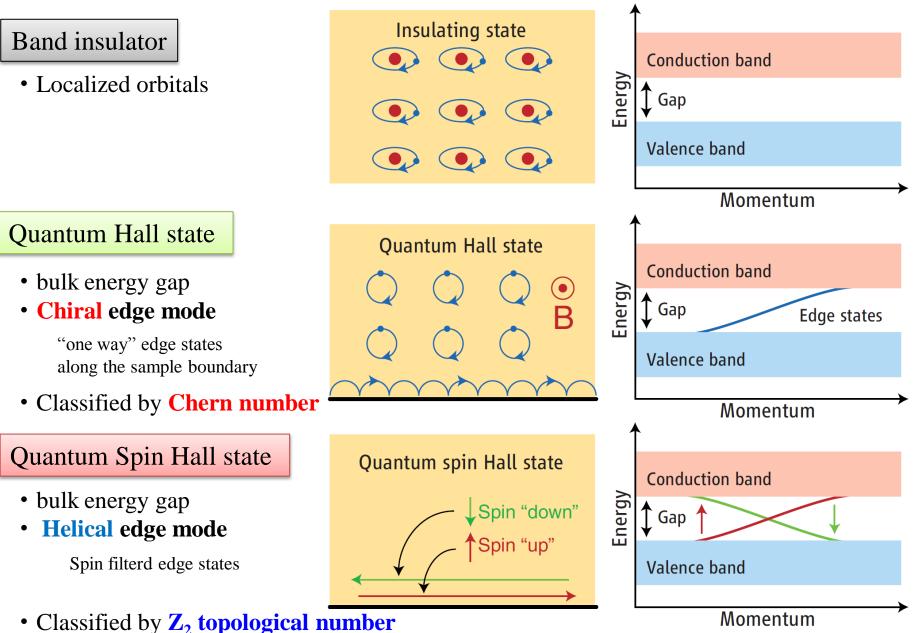
Quantum spin Hall state \approx Qua

 \approx Quantum Hall state \times 2



Various Bulk insulator

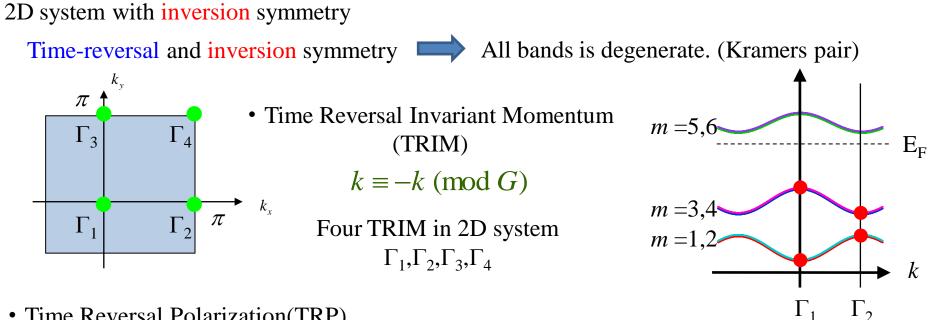
Kane, Mele Science 314, 1692(2009)



Z_2 topological number

Fu,Kane, PRB **76**,045302(2007)

 Γ_2



• Time Reversal Polarization(TRP)

 $P(\Gamma_i) \equiv \prod_{i=1}^{N} \xi_{2m}(\Gamma_i) \qquad \xi_{2m}(\Gamma_i) : \text{the parity eigenvalue of the } 2m\text{th occupied energy band at } \Gamma_i$ N: the number of Kramers pair under E_F

Parity eigenvalue $\hat{P}\psi(r) = \pm \psi(-r)$ $\begin{cases} +1: \text{ symmetric} \\ -1: \text{ asymmetric} \end{cases}$ Ki

Kramers degenerate partner $\xi_{2m-1}(\Gamma_i) = \xi_{2m}(\Gamma_i) = \pm 1$

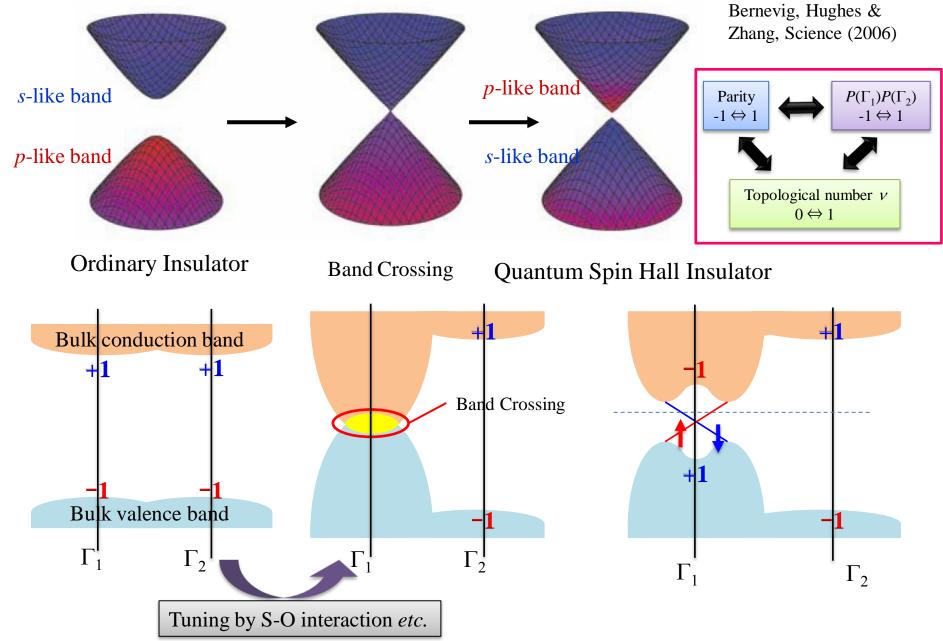
• Z₂ topological number

$$(-1)^{\nu} = \prod_{i=1}^{4} \prod_{m=1}^{N} \xi_{2m} (\Gamma_i) = P(\Gamma_1) P(\Gamma_2) P(\Gamma_3) P(\Gamma_4)$$

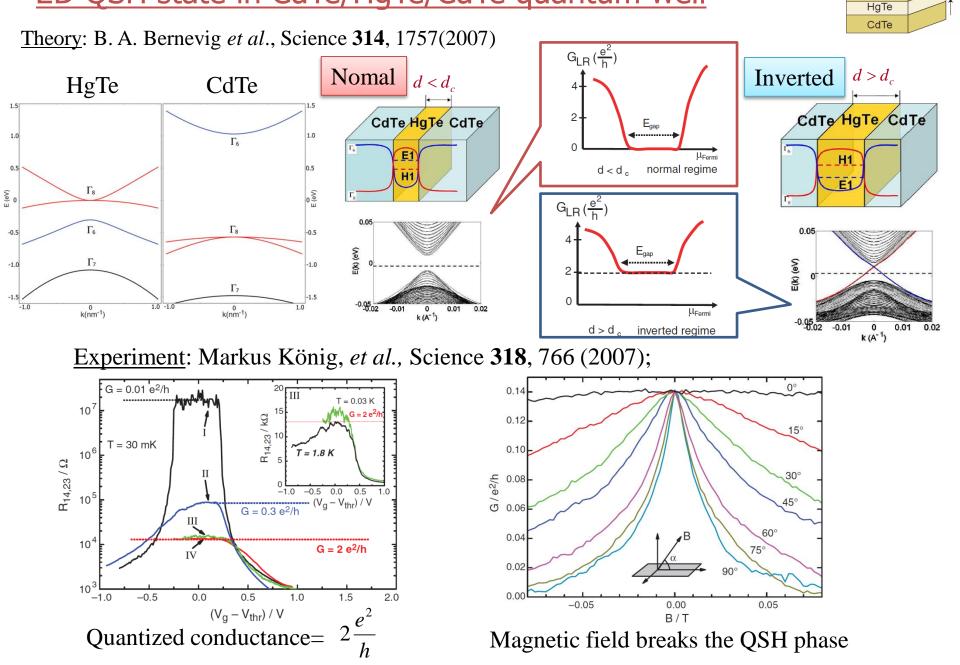
v = 0: trivial insulator v = 1 : QSH

What material is topological insulator?

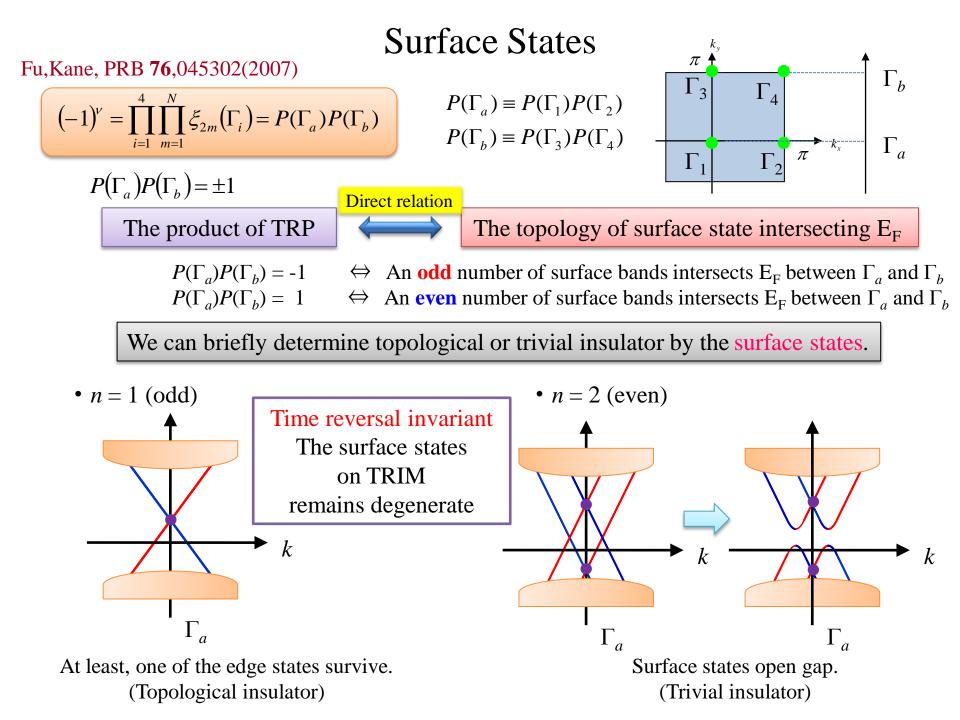
Ex. Insulator with band-inversion

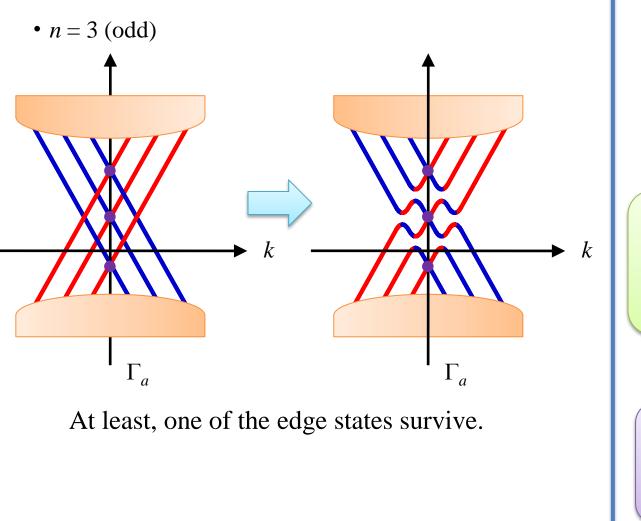


2D QSH state in CdTe/HgTe/CdTe quantum well



CdTe





Appendix

Time-reversal symmetry $E(\mathbf{k},\uparrow) = E(-\mathbf{k},\downarrow)$

> Inversion symmetry $E(\mathbf{k},\uparrow) = E(-\mathbf{k},\uparrow)$

Time-reversal + Inversion $E(\mathbf{k},\uparrow) = E(\mathbf{k},\downarrow)$

All bands is degenerate. (Kramers pair)

Contradiction?

Surface state Inversion symmetry is broken. Time-reversal symmetry $E(\mathbf{k},\uparrow) = E(-\mathbf{k},\downarrow)$

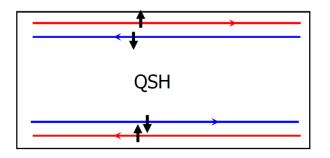
The topology of surface state intersecting E_F

Topological insulator \Leftrightarrow An odd number of surface bands intersects E_F between Γ_a and Γ_b Trivial insulator \Leftrightarrow An even number of surface bands intersect E_F between Γ_a and Γ_b

We can briefly determine topological or trivial insulator by the surface states.

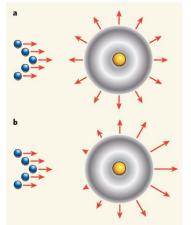
Suppression of the backscattering by nonmagnetic impurities

Quantum Spin Hall phase



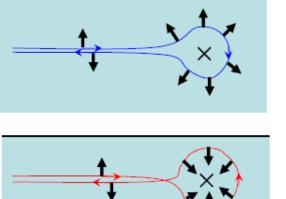
Forward mover with up spin Backforward mover with down spin

Conversely for the other edge

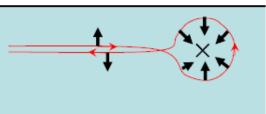


Joel Moore, Nature 460,1090

backscattering by nonmagnetic impurities



Clockwise spin rotation π



Counterclockwise spin rotation $-\pi$

The two paths differ by 2π

Spin ¹/₂ rotation $\exp(-\frac{l}{2}\phi)$

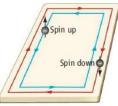
The two backscattering paths always interfere destructively.

Xiao-Liang Qi et al., arXiv:1001.1602

The backscattering by nonmagnetic impurities is forbidden !

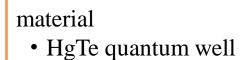
From 2D to 3D topological insulator

2D topological insulator



Helical 1D edge state The dispersion of the state obeys Dirac equation.

1D massless Dirac Fermion



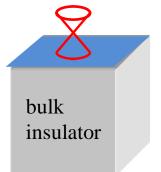
Quantum spin Hall system N. Nagaosa *et al.*, Science **318**, 758

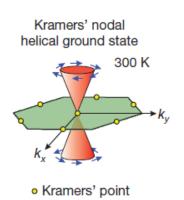
3D topological insulator

Helical 2D surface states (2D massless Dirac Fermion)

Dirac Cone

surface Dirac fermion





Spin polar surface state

material first topological insulator • $Bi_{1-x}Sb_x$ second topological insulator • Bi_2Te_3 • Bi_2Se_3

Second topological insulator

- Nearly idealized **single** Dirac cone
- Stoichiometric \rightarrow high purity
- Large band gap $\sim 0.3 \text{eV}$

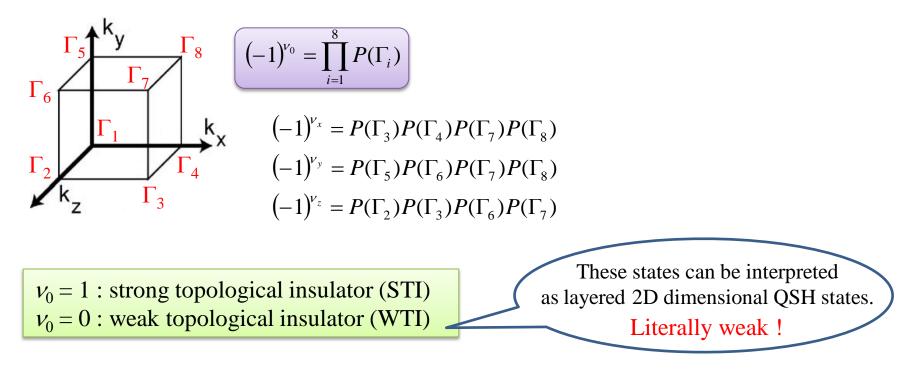
 \aleph graphene Dirac cone $\times 4$

Topological invariant: 3D system with inversion symmetry

• Time Reversal Invariant Momentum (TRIM)

Eight TRIM in 3D system $\Gamma_1 \sim \Gamma_8$ $k \equiv -k \pmod{G}$

• Four Z₂ topological invariant v_0 ; (v_x, v_y, v_z)



We are interested in only strong topological insulator ($v_0 = 1$).

Surface state: 3D system with inversion symmetry

Fermi surface of the surface states on (001) surface Г (001) plane projection $(-1)^{\nu_0} = \prod^{\circ} P(\Gamma_i) = P(\Gamma_a) P(\Gamma_b) P(\Gamma_c) P(\Gamma_d)$ $P(\Gamma_a) \equiv P(\Gamma_1)P(\Gamma_2)$ $P(\Gamma_h) \equiv P(\Gamma_3)P(\Gamma_4)$ $P(\Gamma_{c}) \equiv P(\Gamma_{5})P(\Gamma_{6})$ 0;(0,1,1)1;(0,0,0) $P(\Gamma_{d}) \equiv P(\Gamma_{\tau})P(\Gamma_{s})$ The product of $\text{TRP}(P(\Gamma))$ The topology of surface states intersecting $E_{\rm F}$ Γ_d Γ_d E $P(\Gamma_a)P(\Gamma_b) = -1$ \Leftrightarrow odd number of surface bands between Γ_a and Γ_b (c) (b) $P(\Gamma_a)P(\Gamma_b) = +1$ \Leftrightarrow even number of surface bands between Γ_a and Γ_b

Strong topological insulator $v_0 = 1$

A single *P* differs in sign from the other three.

 $P(\Gamma_a) = +1$ \longrightarrow $P(\Gamma_b) = P(\Gamma_c) = P(\Gamma_d) = -1$

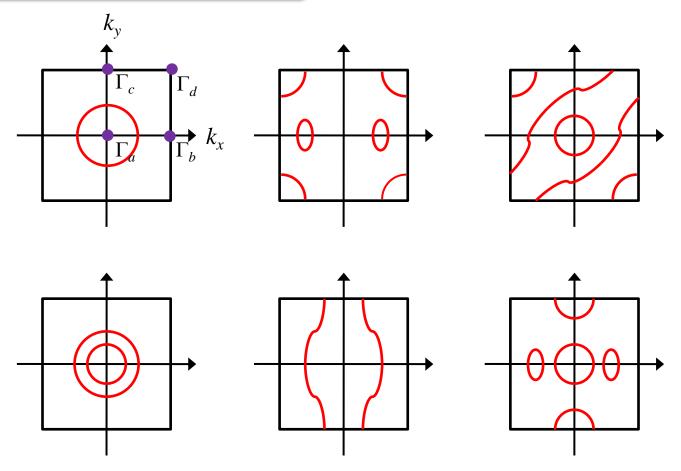
Surface state: 3D system with inversion symmetry

Fermi surface of the surface states on (001) surface

 $(-1)^{\nu_0} = \prod_{i=1}^{8} P(\Gamma_i) = P(\Gamma_a) P(\Gamma_b) P(\Gamma_c) P(\Gamma_d)$

Strong topological insulator $v_0 = 1$

A single *P* differs in sign from the other three.



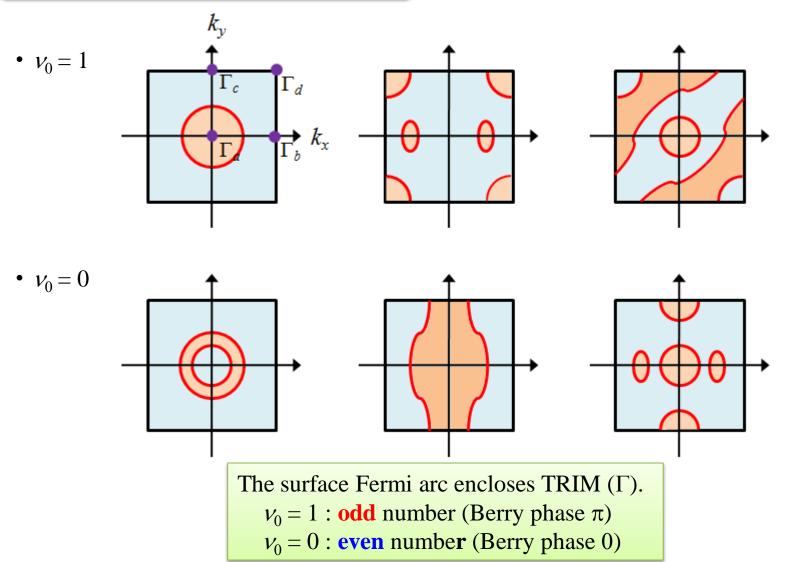
Surface state: 3D system with inversion symmetry

Fermi surface of the surface states on (001) surface

 $(-1)^{\nu_0} = \prod_{i=1}^8 P(\Gamma_i) = P(\Gamma_a) P(\Gamma_b) P(\Gamma_c) P(\Gamma_d)$

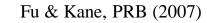
Strong topological insulator $v_0 = 1$

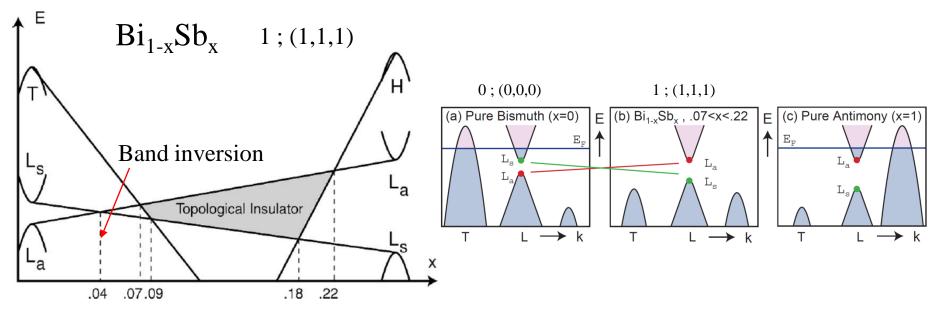
A single *P* differs in sign from the other three.



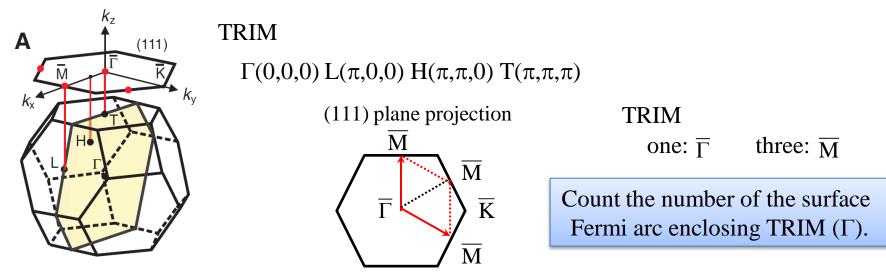
First Topological Insulator Bi_{1-x}Sb_x

3D topological insulator $Bi_{1-x}Sb_x$



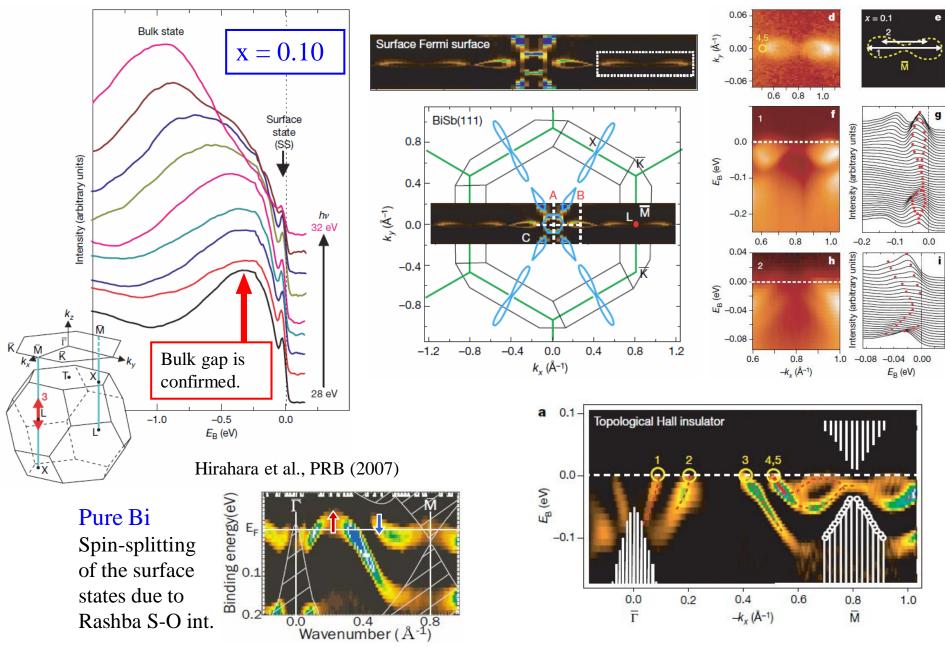


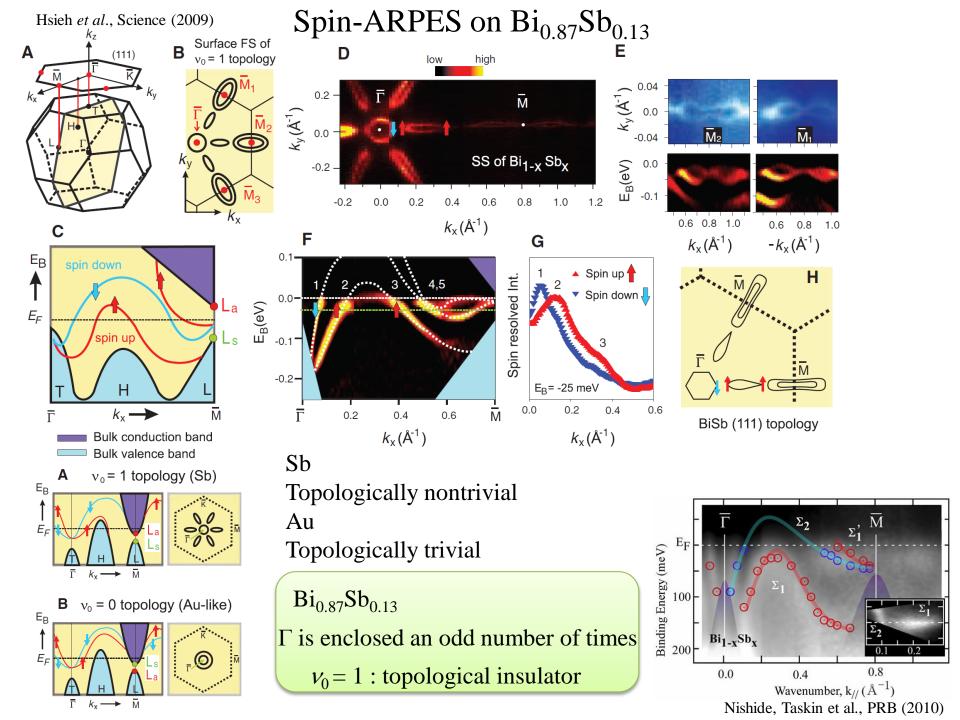
Bi ; rhombohedral crystal structure

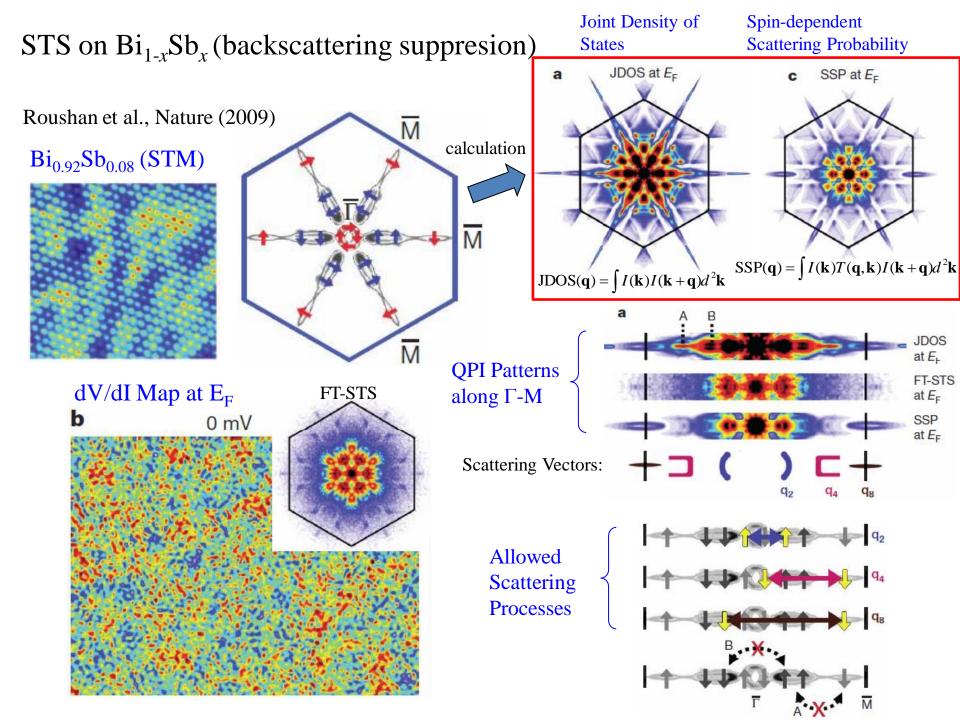


Hsieh et al., Nature (2008)

Surface State of Bi_{0.9}Sb_{0.1}



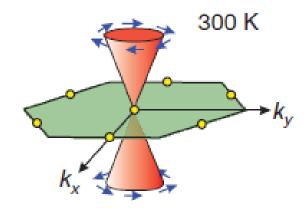




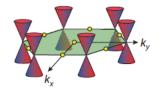
2nd-Generation Topological Insulators

- Nearly idealized single Dirac cone
- Stoichiometric \rightarrow high purity
- Large band gap $\sim 0.3 \text{eV}$

Kramers' nodal helical ground state

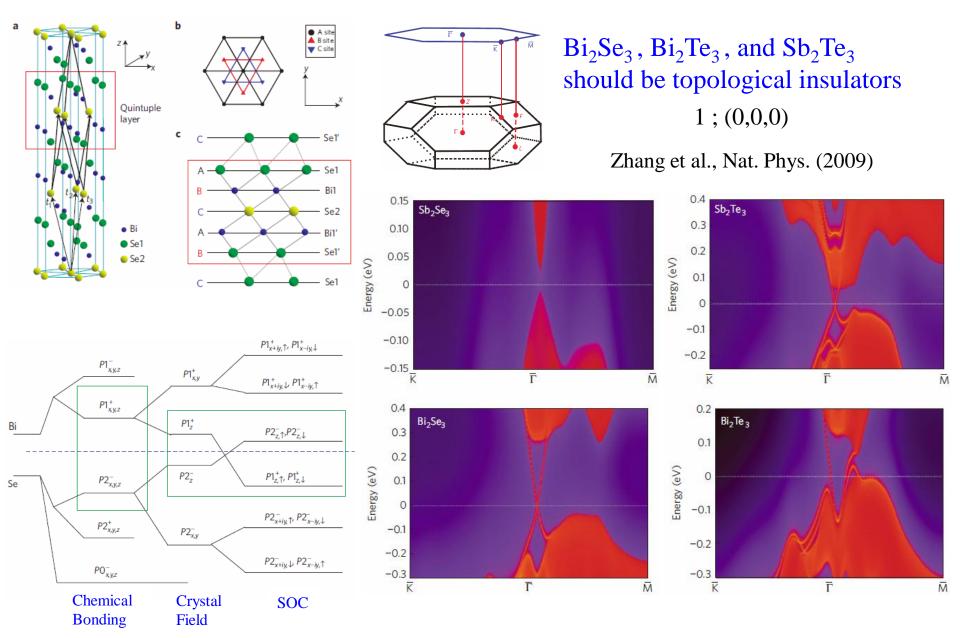


Chiral Dirac gound state

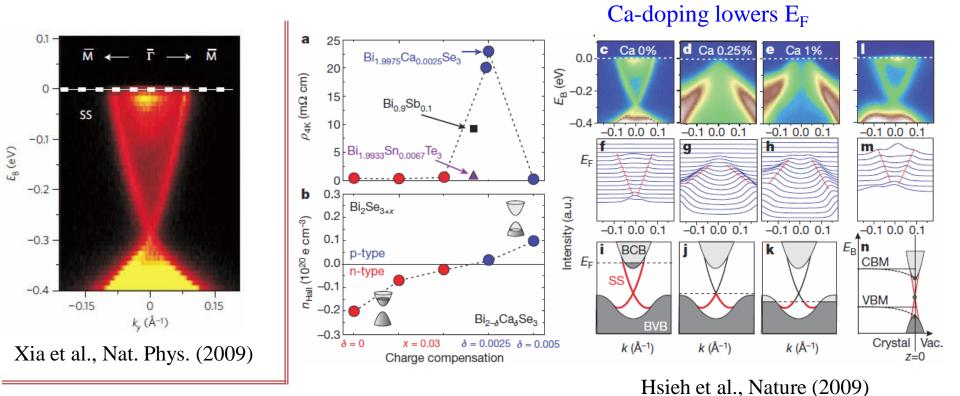


Kramers' point

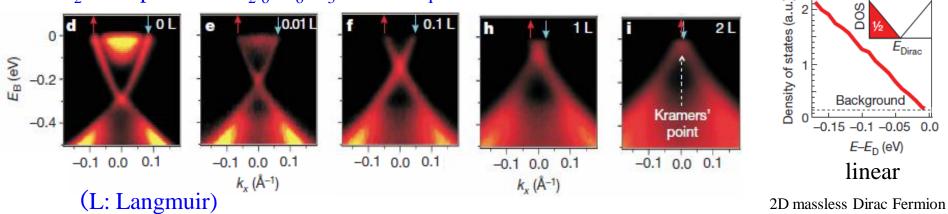
2nd-Generation TIs: Prediction

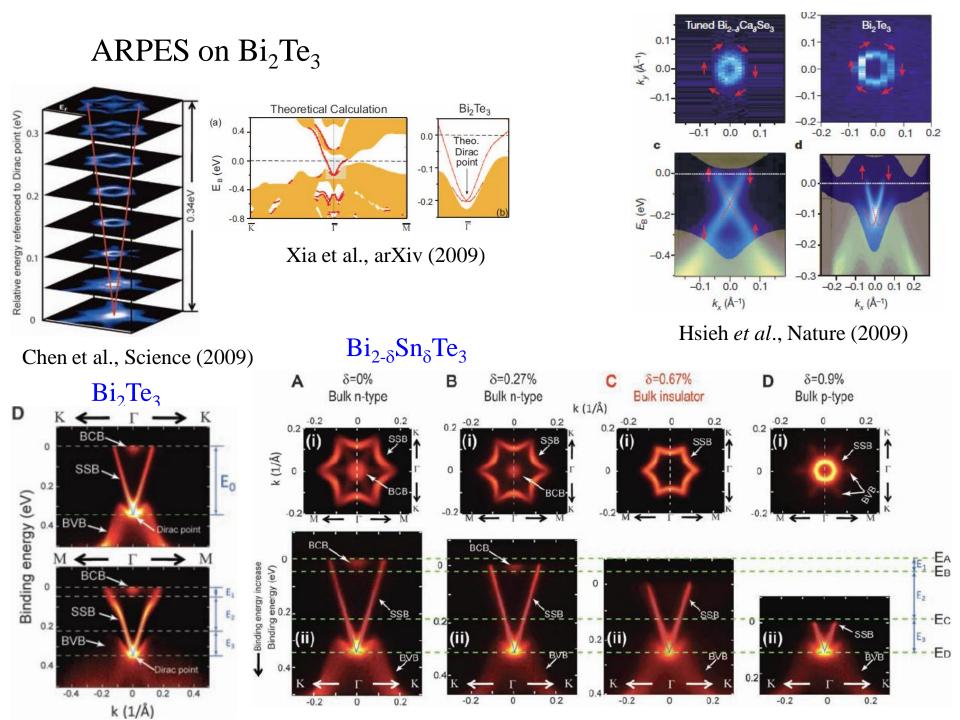


ARPES on Bi₂Se₃



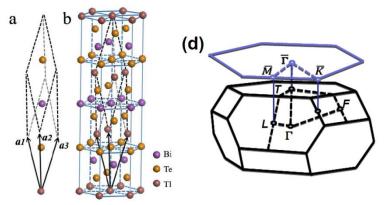
NiO_2 adsorption on $Bi_{2-\delta}Ca_{\delta}Se_3$ to tune E_F

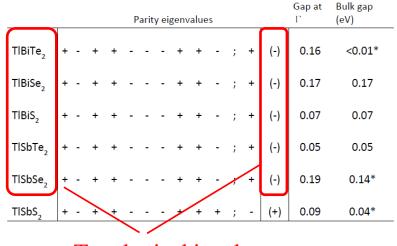




Thallium-based III-V-IV₂ ternary chalcogenides

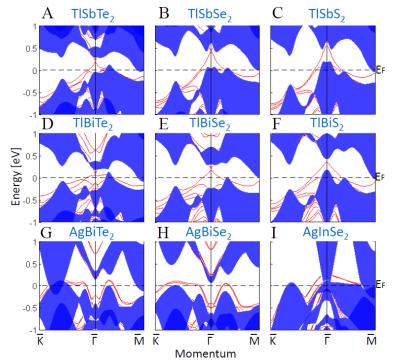
B. Yan et al.,arXiv:1003.0074





Topological insulator

H. Lin *et al.*,arXiv:1003.2615



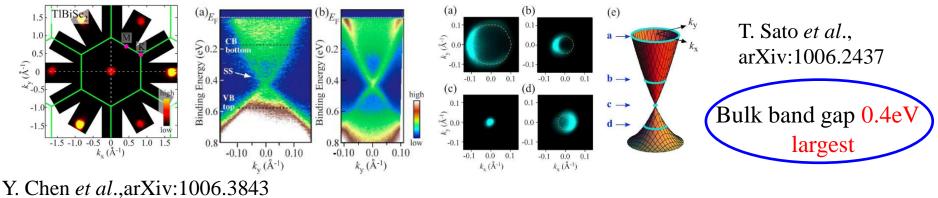
TlBiX₂ and TlSbX₂ (X=Te,Se,S)

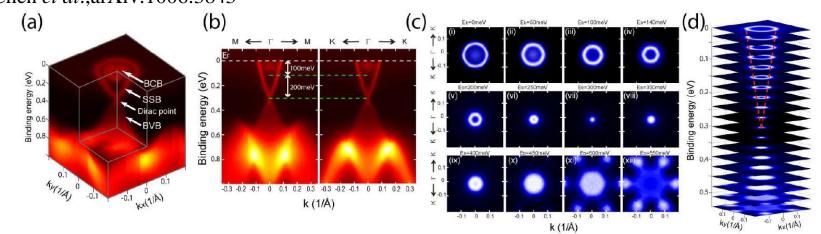
All six compounds are topologically trivial by DFT-GGA calculation.

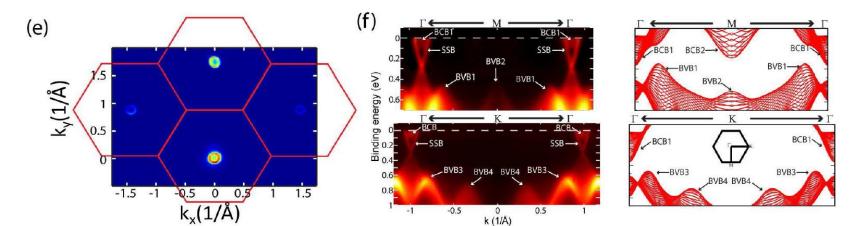
But

Their surface states may have Dirac-cone dispersions due to the band inversion.

ARPES on TlBiSe₂

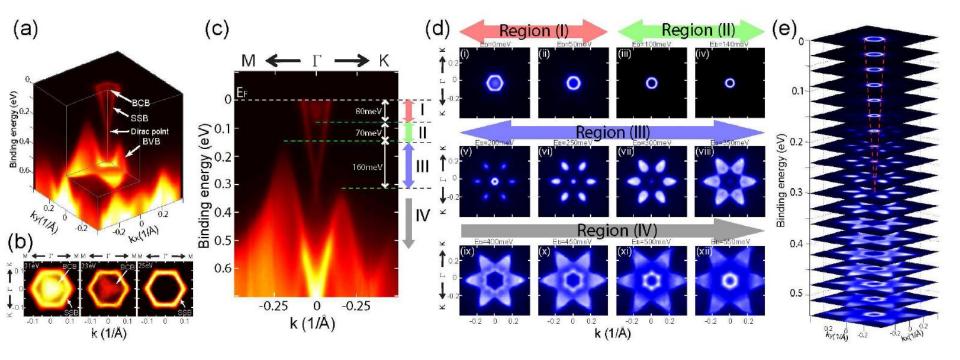


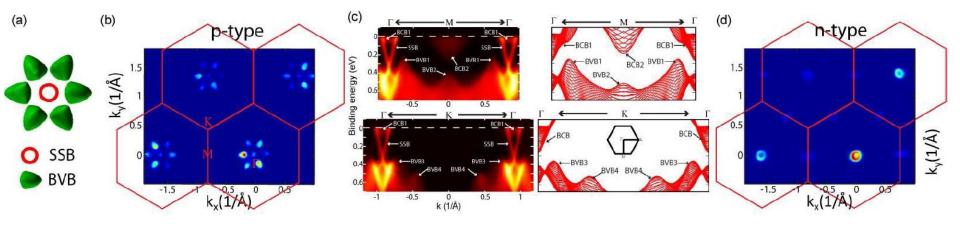




ARPES on TlBiTe₂

Y. Chen et al.,arXiv:1006.3843





Conclusion

Topological insulator

2D system : Z_2 invariant

v = 0: trivial insulator v = 1: QSH

Odd number of surface states intersect between TRIMs.

3D system : four Z_2 invariant

 v_0 ; (v_x, v_y, v_z) $v_0 = 1$: strong topological insulator (STI) $v_0 = 0$: weak topological insulator (WTI)

Odd number of the surface Fermi arc enclosing TRIM

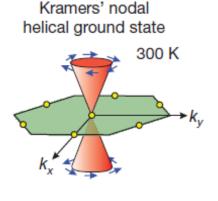
1-st

 $\operatorname{Bi}_{1-x}\operatorname{Sb}_x$

2-nd

 $\mathrm{Bi}_{2}\mathrm{Se}_{3},\,\mathrm{Bi}_{2}\mathrm{Te}_{3}$, TlBiSe_2, TlBiTe_2

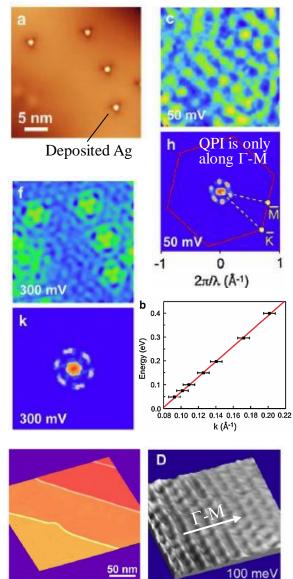
- Nearly idealized single Dirac cone
- Stoichiometric \rightarrow high purity
- Large band gap $\sim 0.3-0.4$ eV

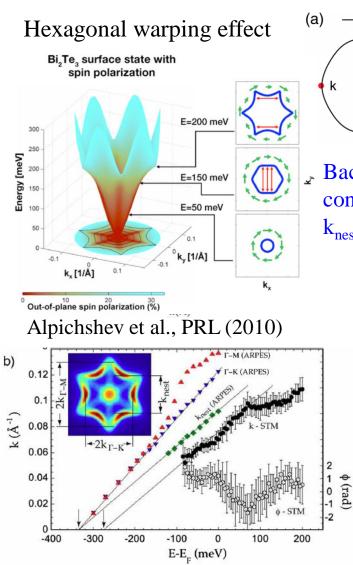


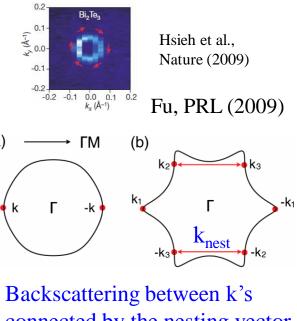
Kramers' point

STS on Bi₂Te₃

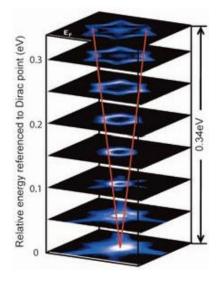
Zhang et al., PRL (2009)





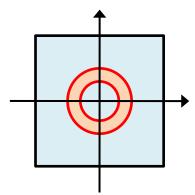


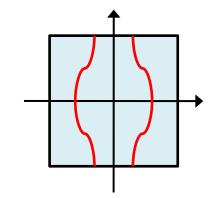
connected by the nesting vector k_{nest} (which is // Γ -M) is allowed.

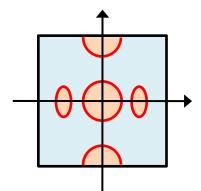


Chen et al., Science (2009)

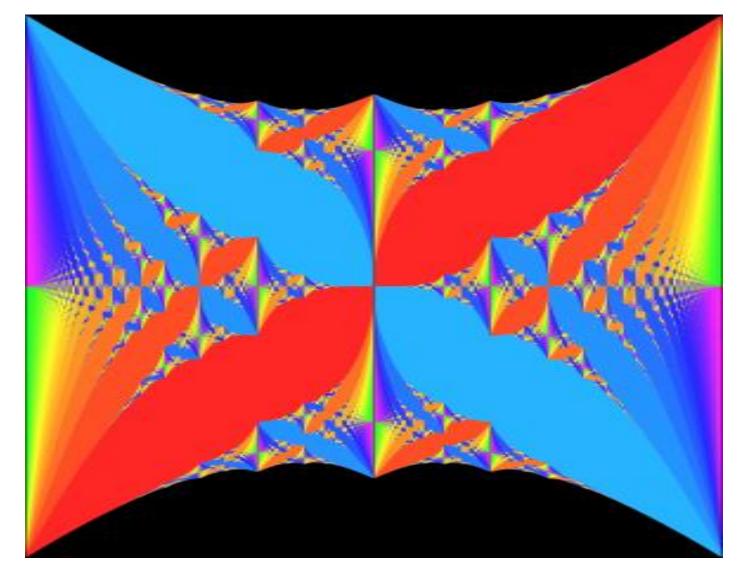








Hofstadter's butterfly



the strength of the magnetic field

Chemical potential