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Outline

v Introduction of the heavy fermion compound URuzSi;

v'Recent key experimental results

(i) Neutron-scattering
C. R. Wiebe et al., Nature Phys. 3, 96 (2007).

vIncommensurate wave vectors Q" ~ 0.6, 1.4 1r/ao
v'Gap-like feature of A ~ 4 meV
(ii) Angle-resolved photoemission spectroscopy (ARPES)

A. F. Santander-Syro et al., Nature Phys. 5, 637 (2009).
v'A light conduction band and a heavy f-band

(iii) Scanning tunneling microscopy (STM)
A. R. Schmidt et al., Nature. 465, 570 (2010).

v'Fano line-shape below the Kondo temperature develops a gap-like
feature below T, = 17.5 K.

v The hole band develops a hybridization feature below the HO
transition, corresponding to momentum Q = 0.3 1t/ ao.

Incommensurate hybridization between the light and heavy fermion bands

v'Hybridization wave as the hidden order
Yonatan Dubi and Alexander V. Balatsky, in preprint




‘Hidden Order’ in URu2Si>

Heavy fermion compound URuzSiz (below ~ 70 K) 0
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C. R. Wiebe et al., Nature Phys. 3, 96 (2007).

O AC/T ~ 300 mJmol-1K-2

More than 20 models have been proposed for the hidden
order parameter, but it is not identified yet.
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Neutron-scattering

LETTERS

Gapped itinerant spin excitations account
for missing entropy in the hidden-order
state of URU,SI-
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Many correlated electron materials, such as high-temperature
superconductors’, geometrically frustrated oxides’ and low-
dimensional magnets**, are still objects of fruitful study because
of the unique properties that arise owing to poorly understood
many-body effects. Heavy-fermion metals*—materials that have
high effective electron masses due to those effects—represent a
class of materials with exotic properties, ranging from unusual
magnetism, unconventional superconductivity and ‘hidden’
order parameters®. The heavy-fermion superconductor URu,Si,
has held the attention of physicists for the past two decades
owing to the presence of a ‘hidden-order’ phase below 17.5K.
Neutron scattering measurements indicate that the ordered
moment is 0.03p,;, much too small to account for the large
heat-capacity anomaly at 17.5 K. We present recent neutron
scattering experiments that unveil a new piece of this puzzle—the
spin-excitation spectrum above 17.5 K exhibits well-correlated,
itinerant-like spin excitations up to at least 10 meV, emanating
from incommensurate wavevectors. The large entropy change
associated with the presence of an energy gap in the excitations
explains the reduction in the electronic specific heat through
the transition.




Inelastic Neutron-scattering

Antiferromagnetic order ?
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Small ordered moment of 0.02 pg/U cannot account for T elastic neutron “scattering
the large heat-capacity anomaly at the HO transition. e oo o o
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Below To=17.5 K

(i) Antiferromagnetic wavevector
Q~(1,0,0)
A~ 2 meV
(i) Incommensurate wavevectors
Q* ~ (0.6, 0, 0), (1.4, 0, 0)
A~ 4 meV

Background

The incommensurate excitations form the

gap of ~ 4 meV through the HO transition. . Wiebe et al., Nature Phys. 3, 96 (2007).




Inelastic Neutron-scattering

Above To=17.5 K

(i) Antiferromagnetic wavevector
Q~(1,0,0)
Weak quasielastic spin fluctuations
(i) Incommensurate wavevectors
Q* ~ (0.6, 0, 0), (1.4, 0, 0)
Strong excitations

The incommensurate excitations have a well-defined

structure. In short, the electrons are highly correlated
above 17.5 K.
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Inelastic Neutron-scattering
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Inelastic Neutron-scattering
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Angle-resolved photoemission spectroscopy (ARPES)
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Fermi-surface instability at the ‘hidden-order’
transition of URu,Si,

Andrés F. Santander-Syro"2**, Markus Klein?, Florin L. Boariu®, Andreas Nuber3, Pascal Lejay*
and Friedrich Reinert3”

Solids with strong electron correlations generally develop
exotic phases of electron matter at low temperatures™. Among
such systems, the heavy-fermion semimetal URu;Si; exhibits
an enigmatic transition at T, = 17.5K to a ‘hidden-order’
state for which the order parameter remains unknown after
23 years of intense research®®. Various experiments point to
the reconstruction and partial gapping of the Fermi surface
when the hidden order establishes®'. However, up to now,
the question of how this transition affects the electronic
states at the Fermi surface has not been directly addressed
by a spectroscopic probe. Here we show, using angle-
resolved photoemission spectroscopy, that a band of heavy
quasiparticles drops below the Fermi level on the transition
to the hidden-order state. Our data provide the first direct
evidence of a large reorganization of the electronic structure
across the Fermi surface of URu;Si; occurring during this
transition, and unveil a new kind of Fermi-surface instability in
correlated electron systems.




Angle-resolved photoemission spectroscopy (ARPES)
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A. F. Santander-Syro et al., Nature Phys. 5, 637 (2009).



Angle-resolved photoemission spectroscopy (ARPES)

(110) direction

v'Heavy quasiparticle band

Intensity (arb. units)

Band width W ~ 7 meV
kie = £0.2 A-1 = 0.3 1r/a0

W = —h*k?. /2m*
=P m* ~22me

v'A light-hole-like conduction band

Intensity (arb. units)

m* ~ 1.4me

The heavy-quasiparticle band spreads beyond |KkiLg|.



Angle-resolved photoemission spectroscopy (ARPES)

(100) direction
T=15K
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The Fermi wavevectors along the (100) and (110) directions are small and

different, proving the existence of anisotropic small-sized Fermi-surface
pockets around the I' point.

= Fermi surface with multi-band compensated structure




Scanning tunneling microscopy (STM)

nature Vol 465|3 June 2010 doi:10.1038/ nature09073

ARTICLES

Imaging the Fano lattice to 'hidden order’

transition in URu,Si,

A.R. Schmidt'?, M. H. Hamidian"?, P. Wahl!'~, F. Meier', A. V. Balatsky®, J. D. Garrett’, T. J. Williams®, G. M. Luke®’
& J. C. Davis"*®?

Within a Kondo lattice, the strong hybridization between electrons localized in real space (r-space) and those delocalized in
momentum-space (k-space) generates exotic electronic states called ‘heavy fermions'. In URu2Si> these effects begin at
temperatures around 55K but they are suddenly altered by an unidentified electronic phase transition at T, = 17.5K.
Whether this is conventional ordering of the k-space states, or a change in the hybridization of the r-space states at each U
atom, is unknown. Here we use spectroscopic imaging scanning tunnelling microscopy (SI-STM) to image the evolution of
URu,Si, electronic structure simultaneously in r-space and k-space. Above T, the ‘Fano lattice’ electronic structure
predicted for Kondo screening of a magnetic lattice is revealed. Below T, a partial energy gap without any associated
density-wave signatures emerges from this Fano lattice. Heavy-quasiparticle interference imaging within this gap reveals its
cause as the rapid splitting below T, of a light k-space band into two new heavy fermion bands. Thus, the URu,Si, ‘hidden
order’' state emerges directly from the Fano lattice electronic structure and exhibits characteristics, not of a conventional
density wave, but of sudden alterations in both the hybridization at each U atom and the associated heavy fermion states.




Scanning tunneling microscopy (STM)

Kondo effect
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A. R. Schmidt et al., Nature. 465, 570 (2010).



Scanning tunneling microscopy (STM)

Above To=17.5 K

Si-site: d-electron
U-site: f-electron

Below 120 K, a Fano line-shape
in the DOS is observed.

|

Strong evidence for the formation
of the Kondo lattice in URuz2Siz
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A. R. Schmidt et al., Nature. 465, 570 (2010).




Scanning tunneling microscopy (STM)
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Scanning tunneling microscopy (STM)
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Quasiparticle Interference (QPI)

v'The hole band develops a
hybridization feature below T,
corresponding to Q = 0.3 1r/ao.
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v'Rapid splitting of the light band
into two heavy bands which
become well separated.
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Hybridization wave in the HO

A light d-band and a heavy f-band cross at Q = +0.3.
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The holes first hybridizes with the local part of the f-electrons.




Hybridization wave in the HO

Below the HO transition

HI,MF = VCT_QfQ + h.c.

Q=0.31/a0
V: Hidden order parameter
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(i) The gap-like feature develops as a function
of V. Its width and position depend on V.

(ii) The additional peak appears at the bottom
of the gap.
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Hybridization wave in the HO

In the mean-field approximation,
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Hybridization wave in the HO
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v Temperature dependence of the gap 000 001 002 003
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(i) Neutron-scattering
Q~0.6,14 1r/ao
(ii) ARPES
Heavy f-band
(iii) STM
Fano line-shape with a gap-like feature below T,

d

k (A

v'A light d-band and a heavy f-band cross at Q = +0.3.

v Above T,, the hole first hybridizes with the f-band.
= Fano line-shape in the LDOS

v'Below To, the band structure gives rise to enhanced hybridization
between the electron with Q and hole with -Q.

= The resulting electron-hole coherence is the HO parameter.



