2010 Summer Seminar, Sakai, Fukui July 22-24, 2010 Echizensangoku

Hybridization wave as the 'Hidden Order' in URu2 Si_{2}

Yonatan Dubi and Alexander V. Balatsky, in preprint
July 24, 2010, 10:00~10:50

Kenichiro Hashimoto

Department of Physics, Graduate School of Science, Kyoto University

Outline

\checkmark Introduction of the heavy fermion compound $\mathrm{URu}_{2} \mathrm{Si}_{2}$

\checkmark Recent key experimental results
(i) Neutron-scattering
C. R. Wiebe et al., Nature Phys. 3, 96 (2007).
\checkmark Incommensurate wave vectors $Q^{*} \sim 0.6,1.4 \pi / a_{0}$
\checkmark Gap-like feature of $\Delta \sim 4 \mathrm{meV}$
(ii) Angle-resolved photoemission spectroscopy (ARPES)
A. F. Santander-Syro et al., Nature Phys. 5, 637 (2009).
\checkmark A light conduction band and a heavy f-band
(iii) Scanning tunneling microscopy (STM)
A. R. Schmidt et al., Nature. 465, 570 (2010).
\checkmark Fano line-shape below the Kondo temperature develops a gap-like feature below $\mathrm{T}_{\mathrm{o}}=17.5 \mathrm{~K}$.
\checkmark The hole band develops a hybridization feature below the HO transition, corresponding to momentum $\mathrm{Q}=0.3 \pi / \mathrm{a} 0$.

Incommensurate hybridization between the light and heavy fermion bands
\checkmark Hybridization wave as the hidden order
Yonatan Dubi and Alexander V. Balatsky, in preprint

'Hidden Order' in URu2Si2

Heavy fermion compound $\mathrm{URu}_{2} \mathrm{Si}_{2}$ (below $\sim 70 \mathrm{~K}$)
$\mathrm{T}_{\mathrm{o}}=17.5 \mathrm{~K}$ 'hidden order' state
Most of the Fermi surface disappear at the HO transition owing to partial gapping of the Fermi surface.

Large entropy jump at T_{o}, but no magnetic ordering ($\mu \sim 0.02 \mu_{\mathrm{B}} / \mathrm{U}$).

$$
\Delta \mathrm{C} / \mathrm{T} \sim 300 \mathrm{mJmol}^{-1} \mathrm{~K}^{-2}
$$

C. R. Wiebe et al., Nature Phys. 3, 96 (2007).

More than 20 models have been proposed for the hidden order parameter, but it is not identified yet.
A: Itinerant picture
SDW
Mineev \& Zhitomirsky (2001)
\boldsymbol{d}-density wave Ikeda \& Ohashi (1998)
Virosztek et al. (2002)
Orbital current Chandra et al. (2002)
Helicity order Varma \& Zhu (2006)
B: Localized picture
Quadrupole
Santini \& Amoretti (1994)
Santini (1998)
Ohkawa \& Shimizu (1999)

Y. S. Oh et al., Phys. Rev. Lett. 98, 016401 (2007).

Y. Kasahara et al., Phys. Rev. Lett. 99, 0116402 (2007).

Neutron-scattering

LETTERS

Gapped itinerant spin excitations account for missing entropy in the hidden-order state of $\mathrm{URU}_{2} \mathrm{Si}_{2}$

C. R. WIEBE ${ }^{1,2 *}$, J. A. JANIK ${ }^{1,2}$, G. J. MACDOUGAL ${ }^{3}$, G. M. LUKE ${ }^{3}$, J. D. GARRETT ${ }^{4}$, H. D. ZHOU², Y.-J. JO², L. BALICAS², Y. QUU5,6, J. R. D. COPLEY5, Z. YAMANI ${ }^{7}$ AND W. J. L. BUYERS ${ }^{7}$

${ }^{1}$ Department of Physics, Forida State University, Tallahassee, Forida 32306-3016, USA
${ }^{2}$ National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306-4005, USA
${ }^{3}$ Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
${ }^{4}$ Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L854M1, Canada
${ }^{5}$ NIST Center for Neutron Research, Gaithersburg, Maryland 20899-8562, USA
${ }^{6}$ Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
${ }^{7}$ CNBC, National Research Council, Chalk River Labs, Chalk River, Ontario K0J 1J0, Canada
*e-mail: cwiebe@magnet.fsuedu
Many correlated electron materials, such as high-temperature superconductors ${ }^{1}$, geometrically frustrated oxides ${ }^{2}$ and lowdimensional magnets ${ }^{3,4}$, are still objects of fruitful study because of the unique properties that arise owing to poorly understood many-body effects. Heavy-fermion metals ${ }^{5}$-materials that have high effective electron masses due to those effects-represent a class of materials with exotic properties, ranging from unusual magnetism, unconventional superconductivity and 'hidden' order parameters ${ }^{6}$. The heavy-fermion superconductor $\mathrm{URu}_{2} \mathrm{Si}_{2}$ has held the attention of physicists for the past two decades owing to the presence of a 'hidden-order' phase below 17.5 K . Neutron scattering measurements indicate that the ordered moment is $0.03 \mu_{\mathrm{B}}$, much too small to account for the large heat-capacity anomaly at 17.5 K . We present recent neutron scattering experiments that unveil a new piece of this puzzle-the spin-excitation spectrum above 17.5 K exhibits well-correlated, itinerant-like spin excitations up to at least 10 meV , emanating from incommensurate wavevectors. The large entropy change associated with the presence of an energy gap in the excitations explains the reduction in the electronic specific heat through the transition.

Inelastic Neutron-scattering

Antiferromagnetic order?

$$
\mu \simeq 0.02 \mu_{\mathrm{B}} / \mathrm{U} \longleftrightarrow \Delta \Delta \simeq 0.2 R \ln 2
$$

Small ordered moment of $0.02 \mu_{\mathrm{B}} / \mathrm{U}$ cannot account for the large heat-capacity anomaly at the HO transition.

Below To $=17.5 \mathrm{~K}$

(i) Antiferromagnetic wavevector Q ~ (1, 0, 0)

$$
\Delta \sim 2 \mathrm{meV}
$$

(ii) Incommensurate wavevectors

$$
\begin{gathered}
Q^{*} \sim(0.6,0,0),(1.4,0,0) \\
\Delta \sim 4 \mathrm{meV}
\end{gathered}
$$

The incommensurate excitations form the gap of $\sim 4 \mathrm{meV}$ through the HO transition.

C. R. Wiebe et al., Nature Phys. 3, 96 (2007).

Inelastic Neutron-scattering

Above $\mathrm{To}_{\mathrm{o}}=17.5 \mathrm{~K}$

(i) Antiferromagnetic wavevector
$\mathrm{Q} \sim(1,0,0)$
Weak quasielastic spin fluctuations
(ii) Incommensurate wavevectors

$$
Q^{*} \sim(0.6,0,0),(1.4,0,0)
$$

Strong excitations

The incommensurate excitations have a well-defined structure. In short, the electrons are highly correlated above 17.5 K .

Not localized system but Itinerant system

Chou model

$$
\begin{gathered}
S(q, \omega)=\frac{\hbar \omega}{1-\mathrm{e}^{-\hbar \omega / k T}} \frac{A}{\kappa^{2}+q^{2}}\left(\frac{\Gamma}{\left(\hbar \omega \pm \hbar \omega_{q}\right)^{2}+\Gamma^{2}}\right) \\
\mathbf{q}=\mathbf{Q}-\delta(\delta: \text { incommensurate wavevector) } \\
\mathbf{k}=\xi^{-1}(\xi: \text { correlation length) } \\
\omega_{\mathbf{q}}=\mathbf{c q}(\mathbf{c}: \text { spin wave velocity) } \\
\xi=\mathbf{1 4} \AA \mathbf{A}, \mathbf{c}=\mathbf{4 5} \mathbf{~ m e V A}
\end{gathered}
$$

The estimated value is comparable to the Fermi velocity of ~ 35 $m e V \AA$ in the thermal conductivity measurements, indicating the
 itinerant nature of the excitations.

Inelastic Neutron-scattering

[$\mathrm{H}, \mathrm{O}, \mathrm{L}$]

Inelastic Neutron-scattering

Electronic specific heat

$$
\begin{aligned}
& C(T)=\frac{\partial}{\partial T} \frac{v_{\mathrm{a}}}{8 \pi^{3}} \int_{0}^{\xi^{-1}} \mathrm{~d} q 4 \pi q^{2} \int_{0}^{E_{\max }} \mathrm{d} E \rho_{0} f(E) E \\
& \mathbf{v}_{\mathrm{a}}: \text { cell volume } \\
& \rho_{0}: \text { density of state } \\
& \mathrm{f}(\mathrm{E})=\operatorname{coth}\left(\mathrm{E} / 2 \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right) \\
& \mathrm{E}_{\max }=\mathrm{k}_{\mathrm{B}} \mathrm{~T} \\
& \rho_{0}=\Gamma^{-1}\left(\Gamma=\mathrm{c} \xi^{-1}, \Gamma: \text { damping }\right) \\
& C_{\mathrm{v}}=\frac{v_{\mathrm{a}} \xi^{-2}}{3 \pi^{2} c} \times k_{\mathrm{B}}^{2} T \\
& \xi=\mathbf{1 4} \AA, \mathbf{c}=\mathbf{4 5} \mathbf{m e V} \AA \\
& \mathbf{Y}=\mathbf{2 2 0} \pm \mathbf{7 0} \mathbf{~ m J m o l} \mathbf{I m}^{-1} \mathrm{~K}^{-2}
\end{aligned}
$$

The incommensurate scattering at $(1.6,0,1)$ disappears at 100 K , where heavy-quasiparticle formation occurs.

Angle-resolved photoemission spectroscopy (ARPES)

nature physics

Fermi-surface instability at the 'hidden-order' transition of $\mathrm{URu}_{2} \mathrm{Si}_{2}$

Andrés F. Santander-Syro ${ }^{1,2 \star \dagger}$, Markus Klein ${ }^{3}$, Florin L. Boariu ${ }^{3}$, Andreas Nuber ${ }^{3}$, Pascal Lejay ${ }^{4}$ and Friedrich Reinert ${ }^{3,5}$

Solids with strong electron correlations generally develop exotic phases of electron matter at low temperatures ${ }^{1-3}$. Among such systems, the heavy-fermion semimetal $\mathrm{URu}_{2} \mathrm{Si}_{2}$ exhibits an enigmatic transition at $T_{0}=17.5 \mathrm{~K}$ to a 'hidden-order' state for which the order parameter remains unknown after 23 years of intense research ${ }^{4,5}$. Various experiments point to the reconstruction and partial gapping of the Fermi surface when the hidden order establishes ${ }^{6-14}$. However, up to now, the question of how this transition affects the electronic states at the Fermi surface has not been directly addressed by a spectroscopic probe. Here we show, using angleresolved photoemission spectroscopy, that a band of heavy quasiparticles drops below the Fermi level on the transition to the hidden-order state. Our data provide the first direct evidence of a large reorganization of the electronic structure across the Fermi surface of $\mathrm{URu}_{2} \mathrm{Si}_{2}$ occurring during this transition, and unveil a new kind of Fermi-surface instability in correlated electron systems.

Angle-resolved photoemission spectroscopy (ARPES)

(110)

The quasiparticle band crosses E_{F} through the HO transition.

A. F. Santander-Syro et al., Nature Phys. 5, 637 (2009).

At 26 K and 18 K
A flat band above E_{F} and at E_{F}
Below To = 17.5 K
Heavy-quasiparticle band is located below E_{F}

Angle-resolved photoemission spectroscopy (ARPES)

(110) direction

\checkmark Heavy quasiparticle band

$$
\begin{gathered}
\text { Band width } \mathrm{W} \sim 7 \mathrm{meV} \\
\text { kite }= \pm 0.2 \AA^{-1}=0.3 \mathrm{\pi} / \mathrm{a}_{0} \\
W=-\hbar^{2} k_{\mathrm{LE}}^{2} / 2 m^{\star} \\
\quad \mathrm{m}^{*} \sim 22 \mathrm{~m}_{\mathrm{e}}
\end{gathered}
$$

\checkmark A light-hole-like conduction band

$$
\mathrm{m}^{*} \sim 1.4 \mathrm{~m}_{\mathrm{e}}
$$

c

The heavy-quasiparticle band spreads beyond |kle|.

Angle-resolved photoemission spectroscopy (ARPES)

(100) direction

$$
\mathrm{T}=15 \mathrm{~K}
$$

$$
k_{L E}= \pm 0.15 \AA^{-1}
$$

The Fermi wavevectors along the (100) and (110) directions are small and different, proving the existence of anisotropic small-sized Fermi-surface pockets around the 「 point.

Fermi surface with multi-band compensated structure

Scanning tunneling microscopy (STM)

ARTICLES

Imaging the Fano lattice to 'hidden order' transition in $\mathrm{URu}_{2} \mathrm{Si}_{2}$

Abstract

A. R. Schmidt ${ }^{1,2}$, M. H. Hamidian ${ }^{1,2}$, P. Wahl ${ }^{1,3}$, F. Meier ${ }^{1}$, A. V. Balatsky ${ }^{4}$, J. D. Garrett ${ }^{5}$, T. J. Williams ${ }^{6}$, G. M. Luke ${ }^{6,7}$ \& J. C. Davis ${ }^{1,2,8,9}$

Within a Kondo lattice, the strong hybridization between electrons localized in real space (r-space) and those delocalized in momentum-space (\mathbf{k}-space) generates exotic electronic states called 'heavy fermions'. In $\mathrm{URu}_{2} \mathrm{Si}_{2}$ these effects begin at temperatures around 55 K but they are suddenly altered by an unidentified electronic phase transition at $T_{\mathrm{o}}=17.5 \mathrm{~K}$. Whether this is conventional ordering of the \mathbf{k}-space states, or a change in the hybridization of the r-space states at each U atom, is unknown. Here we use spectroscopic imaging scanning tunnelling microscopy (SI-STM) to image the evolution of $\mathrm{UR} \mathrm{u}_{2} \mathrm{Si}_{2}$ electronic structure simultaneously in \mathbf{r}-space and \mathbf{k}-space. Above T_{o}, the 'Fano lattice' electronic structure predicted for Kondo screening of a magnetic lattice is revealed. Below \boldsymbol{T}_{0}, a partial energy gap without any associated density-wave signatures emerges from this Fano lattice. Heavy-quasiparticle interference imaging within this gap reveals its cause as the rapid splitting below T_{0} of a light k-space band into two new heavy fermion bands. Thus, the $\mathrm{URu}_{2} \mathrm{Si}_{2}$ 'hidden order' state emerges directly from the Fano lattice electronic structure and exhibits characteristics, not of a conventional density wave, but of sudden alterations in both the hybridization at each U atom and the associated heavy fermion states.

Scanning tunneling microscopy (STM)

Kondo effect

$$
E_{k}^{ \pm}=\frac{\tilde{\varepsilon}_{k}^{f}+E_{k} \pm \sqrt{\left(\tilde{\varepsilon}_{k}^{f}-E_{k}\right)^{2}+4\left|\tilde{V}_{k}\right|^{2}}}{2}
$$

hybridization between the conductance and f-band

Asymmetric differential conductivity

$$
g(\mathbf{r}, E) \propto \frac{\left(\varsigma+E^{\prime}\right)^{2}}{E^{\prime 2}+1} \text { where } E^{\prime}=\frac{\left(E-\varepsilon_{0}\right)}{\Gamma / 2}
$$

$$
\left.\Gamma=\left.\pi N\left(E_{\mathrm{F}}\right)\langle | \tilde{V}_{k}\right|^{2}\right\rangle
$$

$$
\zeta: t_{f} / t_{c}
$$

$$
\varepsilon_{0}: \text { Kondo resonance energy }
$$

「: Kondo resonance width

A. R. Schmidt et al., Nature. 465, 570 (2010).

Scanning tunneling microscopy (STM)

Above $\mathrm{T}_{\mathrm{o}}=17.5 \mathrm{~K}$

> Si-site: d-electron
> U-site: f-electron

Below 120 K, a Fano line-shape in the DOS is observed.

Strong evidence for the formation of the Kondo lattice in $\mathrm{URu}_{2} \mathrm{Si}_{2}$

$$
E_{k}^{ \pm}=\frac{\tilde{\varepsilon}_{k}^{f}+E_{k} \pm \sqrt{\left(\tilde{\varepsilon}_{k}^{f}-E_{k}\right)^{2}+4\left|\tilde{V}_{k}\right|^{2}}}{2}
$$

Scanning tunneling microscopy (STM)

Below To = 17.5 K

(i) Below To, the bottom of the Fano line-shape develops a gap-like feauture.
(ii) Both the Fano parameters and the gap structure depend on the STM tip positions (U or Ru-site).

d

Scanning tunneling microscopy (STM)

Quasiparticle Interference (QPI)

\checkmark The hole band develops a hybridization feature below T_{o}, corresponding to $\mathrm{Q}=0.3 \mathrm{~m} / \mathrm{a}_{0}$.
\checkmark Rapid splitting of the light band into two heavy bands which become well separated.

Hybridization wave in the HO

A light d-band and a heavy \mathbf{f}-band cross at $\mathbf{Q}= \pm 0.3$.

$$
\begin{gathered}
H=\sum_{k} \epsilon_{k}^{(c)} c_{k}^{\dagger} c_{k}+\sum_{k} \epsilon_{k}^{(f)} f_{k}^{\dagger} f_{k}+H_{F} \\
H_{F}=V_{0} \sum_{k, r} c_{k}^{\dagger} f_{r}+h . c .
\end{gathered}
$$

Hybridization between the d-and f-band

$$
\begin{aligned}
g_{k, k^{\prime}} & =g_{k}^{(0)} \delta_{k, k^{\prime}}+\frac{V_{0}^{2}}{\omega-\epsilon_{0}-V_{0}^{2} \chi_{0}} g_{k}^{(0)} g_{k^{\prime}}^{(0)} \\
f_{0} & =\frac{1}{\omega-\epsilon_{0}-V_{0}^{2} \chi_{0}}
\end{aligned}
$$

$\mathrm{g}_{\mathrm{k}, \mathrm{k}}$: Green function of the d-electron
f_{0} : Green function of the f-electron

$$
\chi_{0}=\sum_{k} g_{k}^{(0)}=-\Gamma_{0}(i+q)
$$

Γ_{0} is proportional to the bare-d-band DOS
$\rho=-\frac{1}{\pi} \Im \sum_{k, k^{\prime}} g_{k, k^{\prime}}$
Fano line-shape in the LDOS
$\Gamma_{1}=V_{0}^{2} \Gamma_{0} \quad \Gamma_{1}$: Band width of the Fano line-shape

The holes first hybridizes with the local part of the f-electrons.

Hybridization wave in the HO

Below the HO transition

$$
\begin{gathered}
H_{I, M F}=V c_{-Q}^{\dagger} f_{Q}+h . c . \\
\mathbf{Q}=0.3 \pi / \mathrm{a}_{0}
\end{gathered}
$$

V: Hidden order parameter
If $H_{l, m F}$ operate on the bare hamiltonian, no correction will be observed.

$$
\begin{aligned}
& G_{k, k^{\prime}}=g_{k, k^{\prime}}+\frac{V^{2} g_{k,-Q} g_{-Q, k^{\prime}}}{\omega-\varepsilon_{Q}-V^{2}\left(g_{-Q,-Q}+G_{-Q,-Q}\right)} \\
& G_{-Q,-Q}=\frac{1-\sqrt{1-4 V^{2} f_{Q}^{(0)} g_{-Q,-Q}}}{2 V^{2} f_{Q}^{(0)}} .
\end{aligned}
$$

$$
\operatorname{LDOS} \rho=\sum_{k, k^{\prime}} G_{k, k^{\prime}}
$$

(i) The gap-like feature develops as a function of V. Its width and position depend on V.
(ii) The additional peak appears at the bottom of the gap.

Hybridization wave in the HO

In the mean-field approximation,

$$
V^{2} \propto\left(T_{H O}-T\right)
$$

(i) $E_{\text {min }}$
independent on the temperature
(ii) Epeak: additional peak structure
dependent on the temperature

\checkmark-dependence of the
When the tip is above the Si site, it has better coupling to the d-band, which effectively increases the Fano factor.

Hybridization wave in the HO

\checkmark Temperature dependence of the gap

$$
\begin{aligned}
& V^{2} \propto\left(T_{H O}-T\right) \\
& \quad \Rightarrow \Delta \propto\left(T_{H O}-T\right)^{\nu} \\
& v=0.4
\end{aligned}
$$

In good agreement with the experimental results
\checkmark Temperature of the HO transition

$$
-\frac{1}{U_{-Q, Q}}=T_{H O} \sum_{i \omega_{n}} f_{Q}\left(i \omega_{n}, Q\right) g_{-Q}\left(i \omega_{n}\right)
$$

U below a certain value U_{c}, the equation does not have a solution, due to the compact nature of the interaction in momentum space.

Summary

(i) Neutron-scattering

Q ~ 0.6, 1.4 т / a_{0}
(ii) ARPES

Heavy f-band
(iii) STM

Fano line-shape with a gap-like feature below T_{o}

\checkmark A light d-band and a heavy f-band cross at $Q= \pm 0.3$.
\checkmark Above T_{o}, the hole first hybridizes with the f-band.
\Rightarrow Fano line-shape in the LDOS
\checkmark Below T_{o}, the band structure gives rise to enhanced hybridization between the electron with \mathbf{Q} and hole with - Q.
\Rightarrow The resulting electron-hole coherence is the HO parameter.

