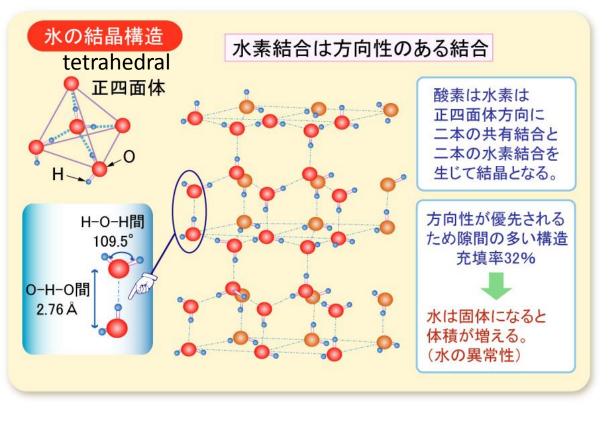

Spin Ice review

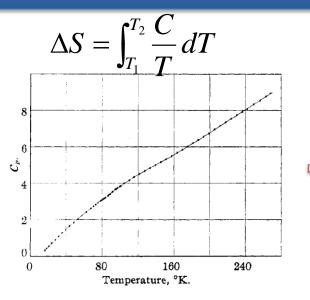


Geometrical frustration

Residual entropy in water ice

O-H-O 2.76 Å O-H distance (gas) 0.95 Å

O-H bonding energy (221 kCal/mol) is so strong that the molecule structure is left unchanged by forming ice from vapor.


2-near 2-far configuration

Α

2 positions of 2 H for N oxygen 2-near 2-far configuration Residual entropy (S = $k_B lnW$) Linus Pauling (1935) JACS 57, 2680 $2^{2N}=4^{N}$ (₄C₂ / 2⁴)^N=(3/8)^N **R ln(3/2)**

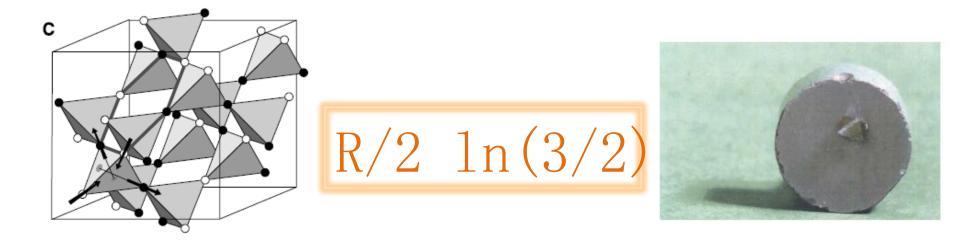
=0.405R = 3.371 J/K mol

Heat capacity measurement of Ice

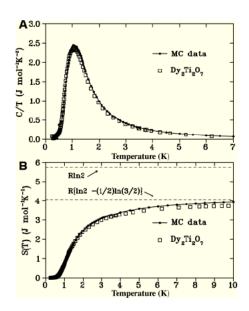
CALCULATION OF ENTROPY OF WATER

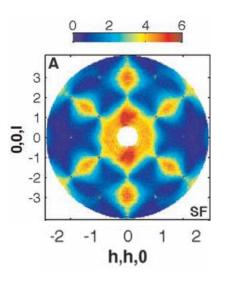
$0-10^{\circ}$ K., Debye function $h\nu/k = 192$	0.022
10-273.10°K., graphical	<u>9.08</u> 1
Fusion 1435.7/273.10	5.257
273.10-298.10°K., graphical	1.580
Vaporization 10499/298.10	35.220
Correction for gas imperfection	0.002
Compression $R \ln 2.3756/760$	-6.886

Giauque & Stout (1936) JACS 58, 1144

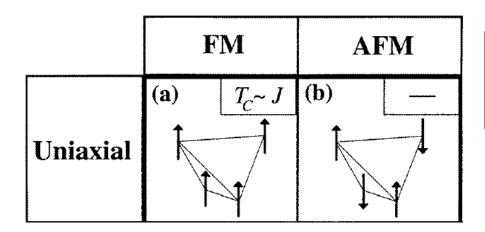

<i>T</i> ⁰K	$-(F^\circ-E_0^\circ)/T$	S°	C°p		
298.1 300 350 400 450 500 550 600	37.179 37.230 38.452 39.513 40.452 41.296 42.062 42.765 42.715	45.101 45.151 46.389 47.472 48.439 49.315 50.119 50.864 51.561	8.000 8.002 8.066 8.155 8.260 8.379 8.504 8.635 8.771	Molecular band calculation of steam $S_{298.1^{\circ}} = 45.1 \text{ cal/K mol}$	$\Delta S = 0.82 \text{ cal/K mol}$ = 3.43 J/K mol ~ R ln(3/2) = 3.37 J/K mol
650 700 750 800	43.415 44.020 44.587 45.121	51.561 52.216 52.836 53.425	8.771 8.910 9.053 9.199		reement might be fortuitous.

Gordon (1934) J. Chem. Phys. 2, 65


Agreement might be fortuitous. Very complicate due to vapour-liquid, liquid-ice transition


Cal./deg./mole 44.28 ± 0.05

(Huge latent entropy)

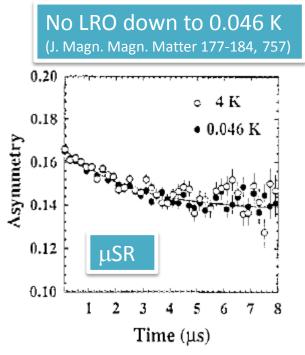


SPIN ICE

Ising Antiferromagnets on Pyrochlore

At first glance, there is *frustration* only for *antiferromagnets*, and *no-frustration for ferromagnets*.

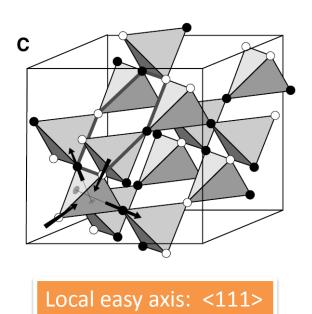
(Ising in cubic pyrochlore is *unphysical*).

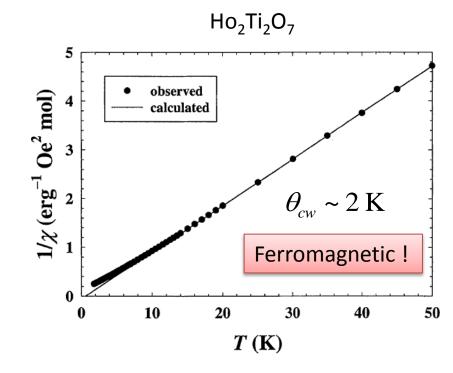

VOLUME 79, NUMBER 13 PHYSICAL REVIEW LETTERS 29 SEPTEMBER 1997

Geometrical Frustration in the Ferromagnetic Pyrochlore Ho2Ti2O7

M. J. Harris,¹ S. T. Bramwell,² D. F. McMorrow,³ T. Zeiske,⁴ and K. W. Godfrey⁵ ¹ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom ²Department of Chemistry, University College London, 20 Gordon Street, London, WC1H0AJ, United Kingdom ³Department of Solid State Physics, Risø National Laboratory, DK-4000 Roskilde, Denmark ⁴Institut für Kristallographie, Universität Tübingen, c.o. Hahn-Meitner-Institut, Glienickerstrasse 100, D-14109, Berlin, Germany ⁵Oxford Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom (Received 19 May 1997)

We report a detailed study of the pyrochlore $Ho_2 Ti_2O_7$, in which the magnetic ions (Ho^{3+}) are ferromagnetically coupled with $J \sim 1$ K. We show that the presence of local Ising anisotropy leads to a geometrically frustrated ground state, preventing long-range magnetic order down to at least 0.05 K. However, unlike in the case of a frustrated *antiferromagnet*, this disorder is principally static. In a magnetic field, the ground-state degeneracy is broken and ordered magnetic phases are formed which display an unusual history dependence due to the slow dynamics of the system. These results represent the first experimental evidence for geometrical frustration in a *ferromagnetic* system. [S0031-9007(97)04147-1]


PACS numbers: 75.50.Lk, 75.25.+z, 75.40.Gb



Cubic Pyrochlore A₂B₂C₇


Insulator

A: rare-earth (Ho, Dy) Ho³⁺ (4 f^{10}) Dy³⁺ (4 f^{9}) B: Ti/Sn (non-magnetic) C: O (center of tetrahedra)

Ising spin in Pyrochlore

Ho ³⁺	Dy ³⁺
4 <i>f</i> ¹⁰	4 <i>f</i> ⁹
2	5/2
6	5
8	15/2
$\left 8,M_{J}\right\rangle = \left 8,\pm8\right\rangle$	$\left \frac{15}{2}, M_{J}\right\rangle = \left \frac{15}{2}, \pm \frac{15}{2}\right\rangle$
	4f ¹⁰ 2 6 8

Next excitation level is separated ~ 200 K

Ising spin system

Anisotropic Ising Magnet

Heisenberg Hamiltonian with easy axis anisotropy

$$H = \frac{D}{2} \sum_{K,\kappa} (\hat{\mathbf{d}}_{\kappa} \cdot \mathbf{S}_{K,\kappa})^2 + J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j.$$

 $\vec{S}_i = T_i \cdot \hat{d}_i$ $T_i = 1$: spin pointing out of a "up" tetrahedr on

 $T_i = -1$: spin pointing in of a "up" tetrahedr on

$$V = DN - \frac{J}{3} \sum_{\langle i,j \rangle} T_i T_j.$$

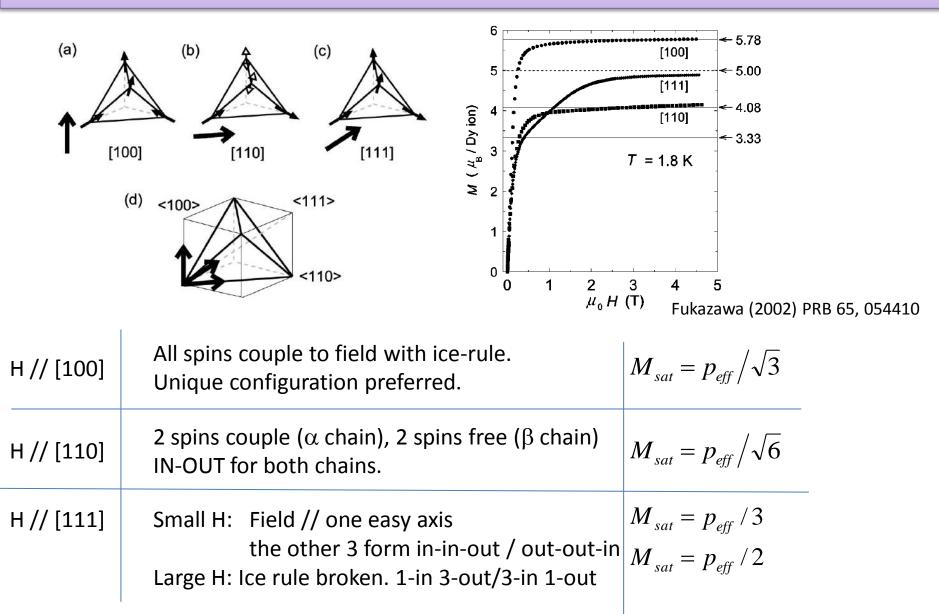
./~ 1K

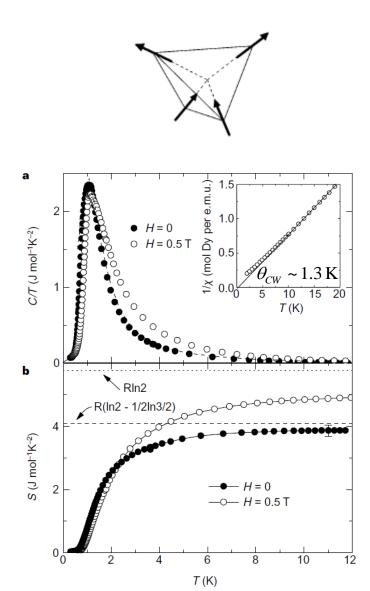
"Heisenberg magnet on the pyrochlore lattice can be mapped on to an Ising model with an exchange constant of the opposite sign" R. Moessner (1998) PRB **57**, R5587

NO FRUSTRATION

For J > 0 (AFM), choose all spin "IN" or "OUT"

For J < 0 (FM), maximize the number of pair of IN & OUT




Macroscopically degenerated states Frustrated in ferromagnets

 \mathbf{d}_{κ} local easy axis

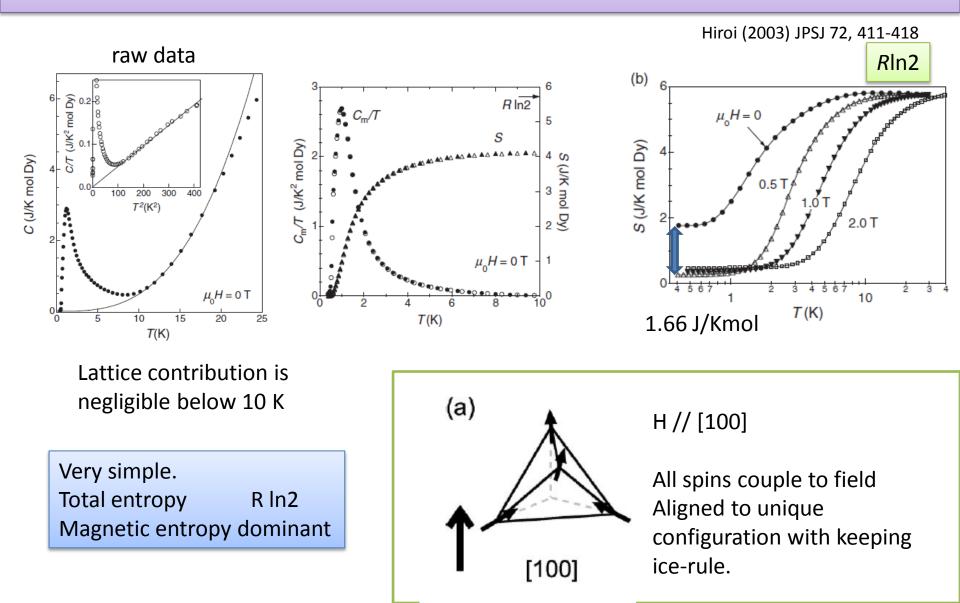
Magnetization in (Dy,Ho)₂Ti₂O₇

Residual entropy in Spin Ice

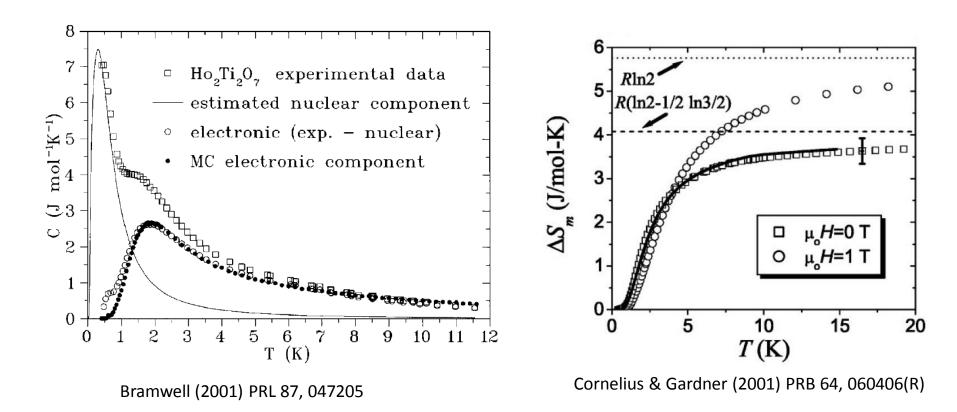
For N spins, possible configurations	2 ^N
Number of tetrahedron	N/2
2-IN 2-OUT configurations	$({}_{4}C_{2} / 2^{4})^{N/2} = (3/8)^{N/2}$
Residual entropy	$\frac{R}{2}\ln\left(\frac{3}{2}\right) \approx 0.2027R$ $= 1.68 \frac{J}{K \cdot mol}$

Zero-point entropy in 'spin ice'

A. P. Ramirez*, A. Hayashi†, R. J. Cava†, R. Siddharthan‡ & B. S. Shastry‡


* Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974, USA

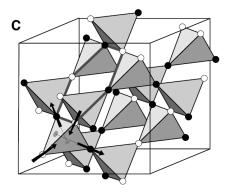
† Chemistry Department, Princeton University, Princeton, New Jersey 08540, USA ‡ Department of Physics, Indian Institute of Science, Bangalore 560012, India


Heat capacity of single crystal Dy₂Ti₂O₇

Nature (1999) **399**, 333-335

Specific Heat of Dy₂Ti₂O₇

Specific Heat of Ho₂Ti₂O₇


Nuclear hyperfine coupling causes a Schottky anomaly. Estimation of the nuclear component was done by C meas. of isostructual Ho₂GaSbO₇.

Large magnetic moment in Pyrochlore $R_2B_2C_7$

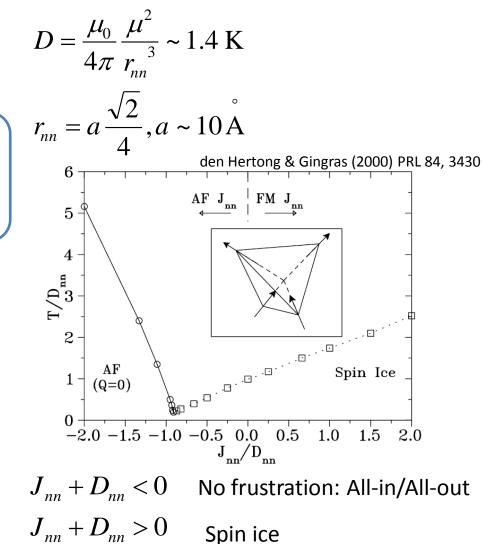
Large magnetic moment

Fig. 2. Flux-grown octahedral crystal of $Ho_2Ti_2O_7$ stuck to a NdFeB permanent magnet at room temperature. The strong paramagnetism reflects the large magnetic moment of Ho^{3+} .

	Ho ³⁺	Dy ³⁺
electron configuration	4 <i>f</i> ¹⁰	4 <i>f</i> ⁹
$g_{ m J}$	5/4	4/3
J	8	15/2
$p_{\rm eff} = g_J (J(J+1))^{1/2}$	10.61	10.65

Bramwell (2001) Science 294, 1495

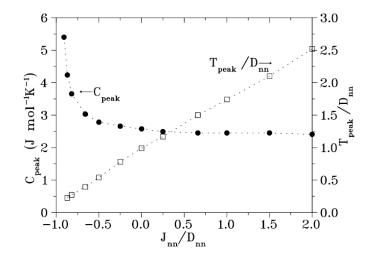
Dipolar spin ice model

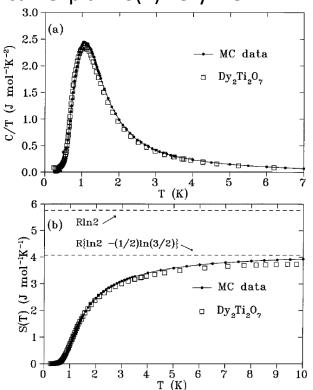

Large magnetic moment

	Ho ³⁺	Dy ³⁺
μ/μ_{B}	10.61	10.65

Dipolar spin ice model

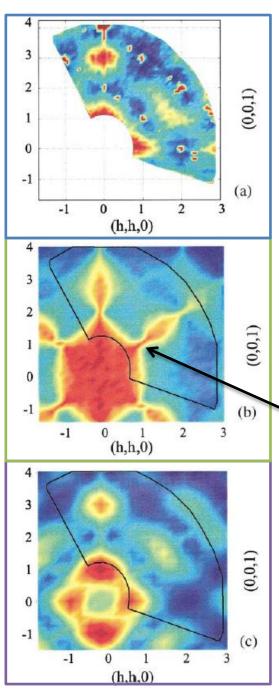
$$H = -J \sum_{\langle ij \rangle} \mathbf{S}_{i}^{z_{i}} \cdot \mathbf{S}_{j}^{z_{j}}$$
$$+ Dr_{nn}^{3} \sum_{j \geq i} \frac{\mathbf{S}_{i}^{z_{i}} \cdot \mathbf{S}_{j}^{z_{j}}}{|\mathbf{r}_{ij}|^{3}} - \frac{3(\mathbf{S}_{i}^{z_{i}} \cdot \mathbf{r}_{ij})(\mathbf{S}_{j}^{z_{j}} \cdot \mathbf{r}_{ij})}{|\mathbf{r}_{ij}|^{5}}$$


For nearest-neighbor $S_{i} \cdot S_{j} = -\frac{1}{3}\sigma_{i} \cdot \sigma_{j}$ $(S_{i} \cdot r_{ij}) \cdot (S_{j} \cdot r_{ij}) = -\frac{2}{3}\sigma_{i} \cdot \sigma_{j}$ $H = \sum \left(\frac{J}{3} + \frac{5D}{3}\right)\sigma_{i} \cdot \sigma_{j}$ $\equiv \sum (J_{nn} + D_{nn})\sigma_{i} \cdot \sigma_{j} \equiv \sum J_{eff}\sigma_{i} \cdot \sigma_{j}$ Dipole-dipole energy for nearest-neighbor


Monte-Carlo Simulation in Dipolar spin ice model

den Hertong & Gingras (2000) PRL 84, 3430

MC simulation based on dipolar spin ice model can explain C(T) very well.



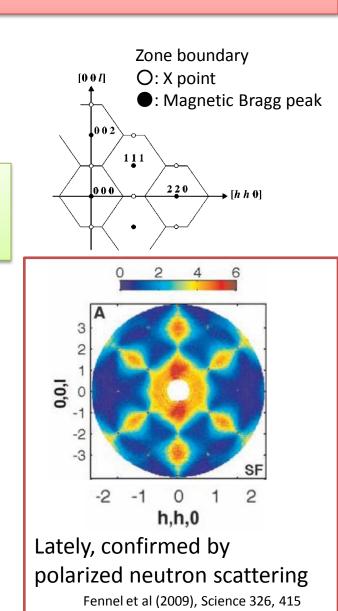
	Ho ₂ Ti ₂ O ₇	Dy ₂ Ti ₂ O ₇
<i>D</i> (K)	1.41	1.41
<i>D_{nn}</i> (К)	2.35	2.35
J (K)	-1.65	-3.72
<i>Ј_{пп}</i> (К)	-0.55	-1.24
J _{eff} (K)	+1.8	+1.1

D is calculated by the moment μ and the distance, *a*.

Fitting to the C measurement gives J and J_{eff} .

Bramwell (2001) PRL 87, 047205

Neutron scattering

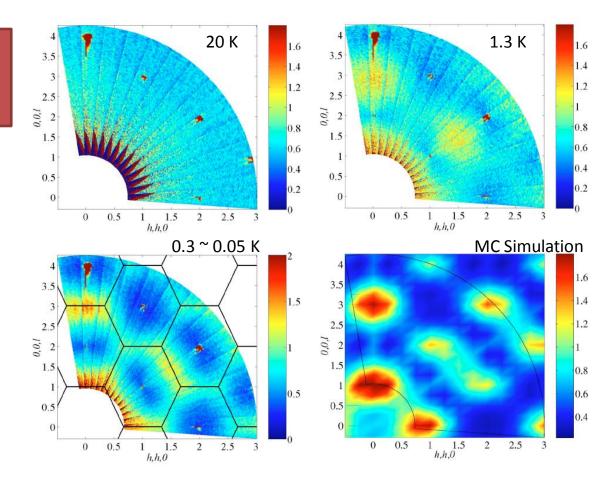

< Experiment> Ho₂Ti₂O₇ , T = 50 mK

<Monte-Carlo simulation> Nearest neighbor spin ice model D = 0, J > 0

"Pinch-point" Clear feature of spin ice

<Monte-Carlo simulation> Dipolar spin ice model D_{nn} = 2.35 K, J_{nn} = -0.52 K (AF)

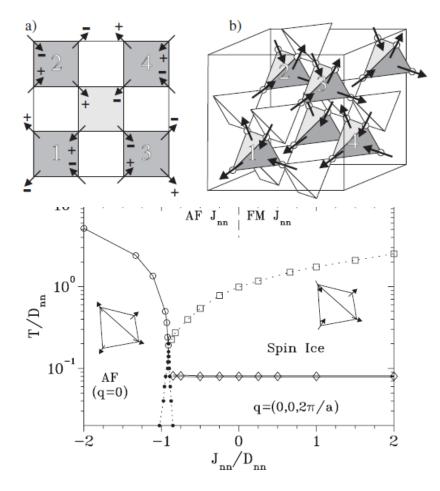
This model captures exp well (0,0,3) (3/2, 3/2, 3/2)



Neutron scattering in ¹⁶²Dy₂Ti₂O₇

Dy naturally contains several isotopes and some of them are strong neutron absorber.

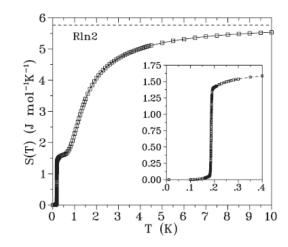
TABLE I. Isotopic abundances and absorption cross sections (σ_a) of natural dysprosium and the enriched sample used in these experiments (Ref. 32).


Isotope	Natural Abundance (%)	Sample Content (%)	σ _a (barn)
Natural			994.(13.)
¹⁵⁶ Dy	0.06	< 0.01	33.(3.)
¹⁵⁸ Dy	0.1	< 0.01	43.(6.)
¹⁶⁰ Dy	2.34	0.02	56.(5.)
¹⁶¹ Dy	19	0.47	600.(25.)
¹⁶² Dy	25.5	96.8	194.(10.)
¹⁶³ Dy	24.9	2.21	124.(7.)
¹⁶⁴ Dy	28.1	0.5	2840.(40.)
Sample			207.6

Spin ice correlation develops below 1.3 K

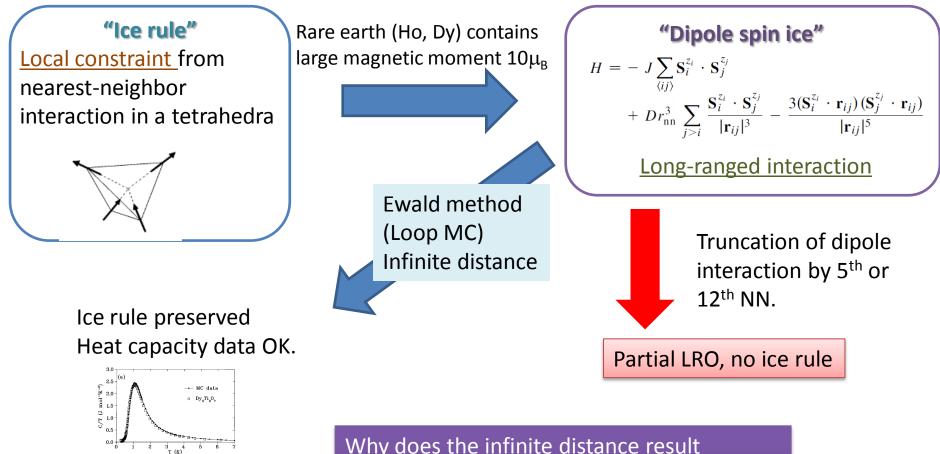
Long-range order in Dipolar Spin Ice

(0, 0, 2π/a) Phase



Melko et al. (2001) PRL 87, 067203 Melko (2004) J. Phys. Condens. Matter 16, R1277 Dipole type interaction is "complicated".

1. Anisotropic $(S_i \cdot r_{ij}) \cdot (S_j \cdot r_{ij})$


2. Long ranged (~ $1/r^3$, D_{nnn} ~ 0.2 D_{nn})

Loop Monte Carlo simulation shows the long-range ordered state

No experimental evidence down to 50 mK. (Due to the 1st order phase transition nature?)

"Dipolar Spin Ice" and/or "Nearest-neighbor model"

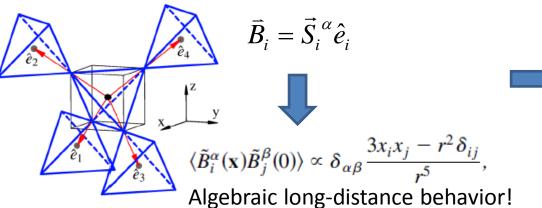
Riln2 -(1/2)ln(3/2

Dy Ti O

3 4 5 6 7 8 9 10 T (K)

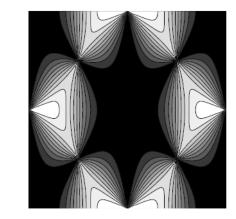
r) 2 (E) Why does the infinite distance result resemble the nearest-neighbor interaction more than a truncated interaction?

"Projective equivalence"

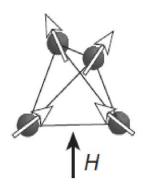

Start from NN Heisenberg

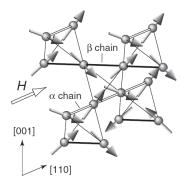
$$H = \sum_{(i,j)} \vec{S}_i \cdot \vec{S}_j$$

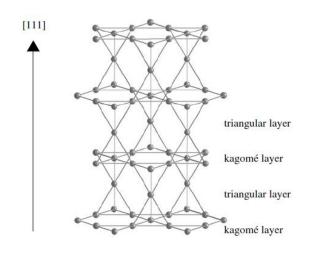
With local constraint

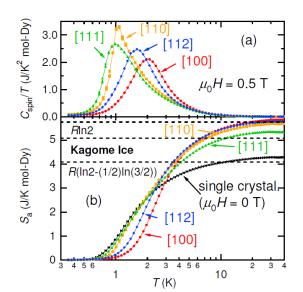

$$\sum_{i\in\otimes}S_i^{\alpha}=0$$

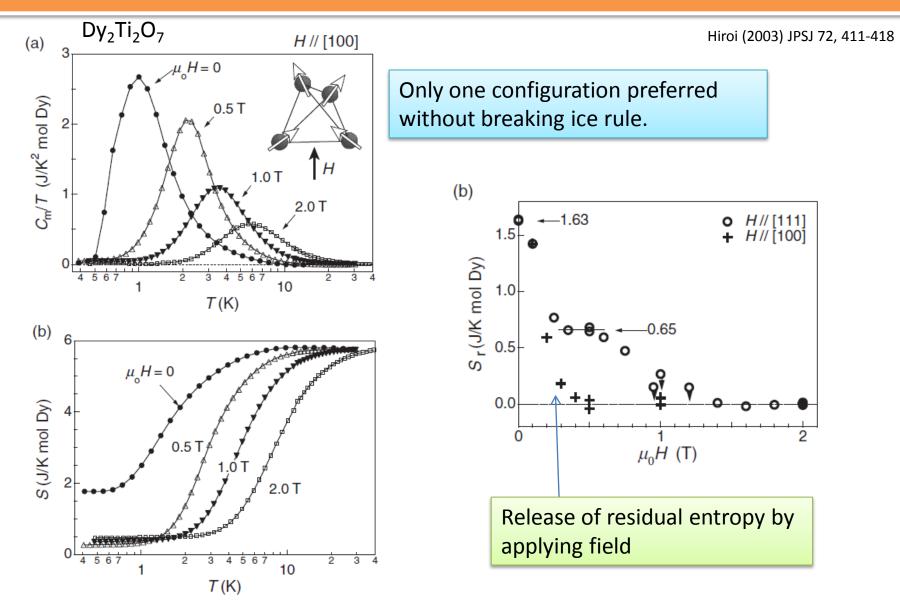
Define artificial vector field from spin on vertex of pyrochlore lattice


"one can construct a model dipole interaction, by adding terms of shorter range, which yields <u>precisely</u> the same ground states, and hence T =0 entropy, as the nearest-neighbor interaction."

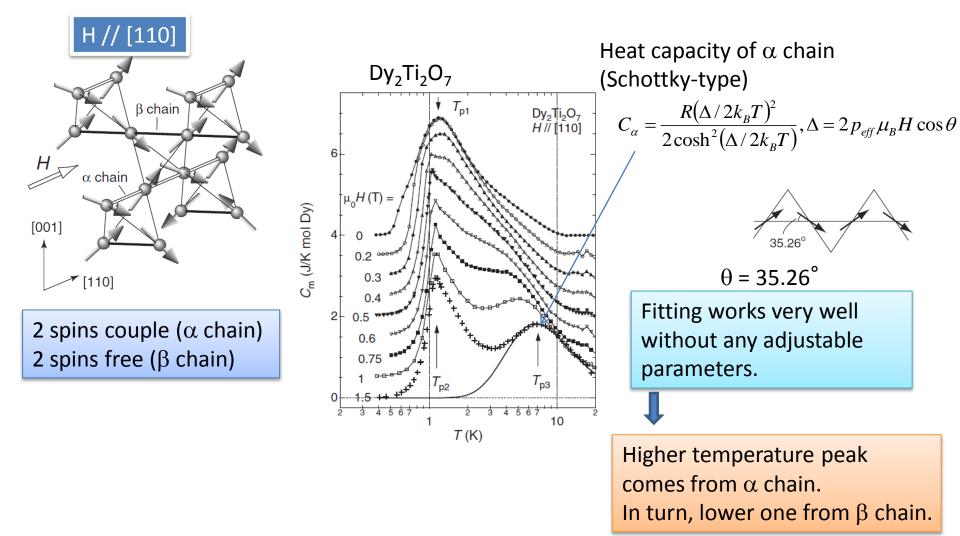

Pinch-point in S[hhk]


"In short, dipolar spins are ice because ice is dipolar."


S.V. Isakov, R. Moessner and S.L. Sondhi, PRL 93, 167204 (2004); PRL 95, 217201 (2005)

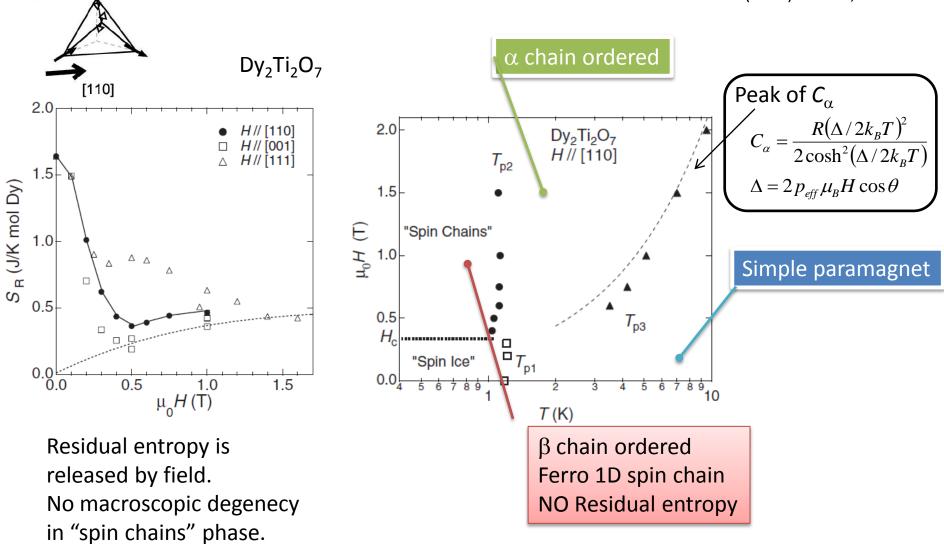


SPIN ICE UNDER MAGNETIC FIELD

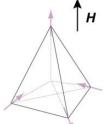


Spin Ice: H // [100]

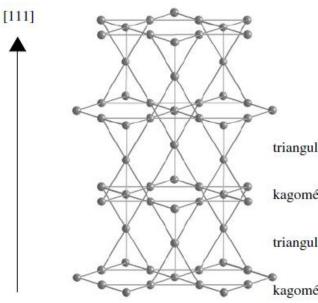
Spin Ice: H // [110]

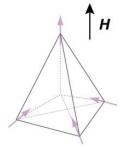

Hiroi (2003) JPSJ 72,3045-3048

Spin Ice: H // [110]


(b)

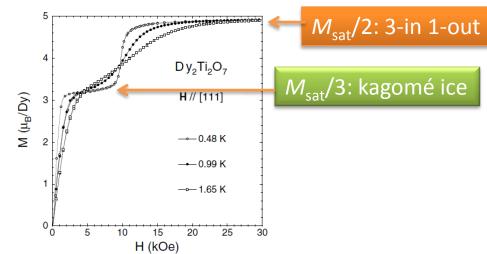
Hiroi (2003) JPSJ 72,3045-3048




Spin Ice: H // [111]

Along [111], Pyrochlore lattice consists alternating triangular and kagomé layers.

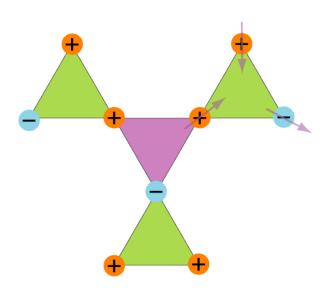
Spins on triangular layer are fixed to [111]. Others on kagomé layer form 2-in 1-out/1in 2-out (up spins are preferred).


triangular layer

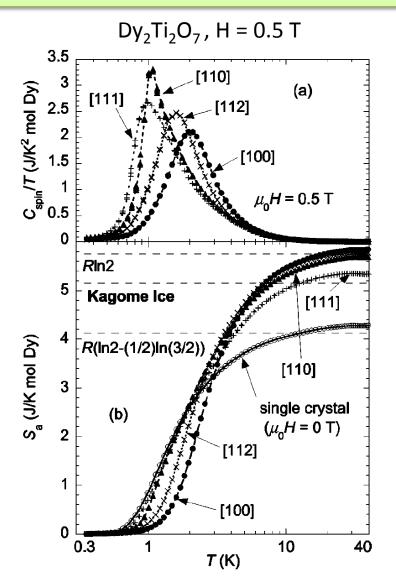
kagomé layer

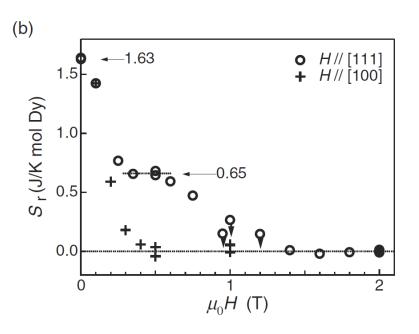
triangular layer

kagomé layer


All spins point to upward. Ice-rule broken state. 3-in 1-out / 1-in 3-out

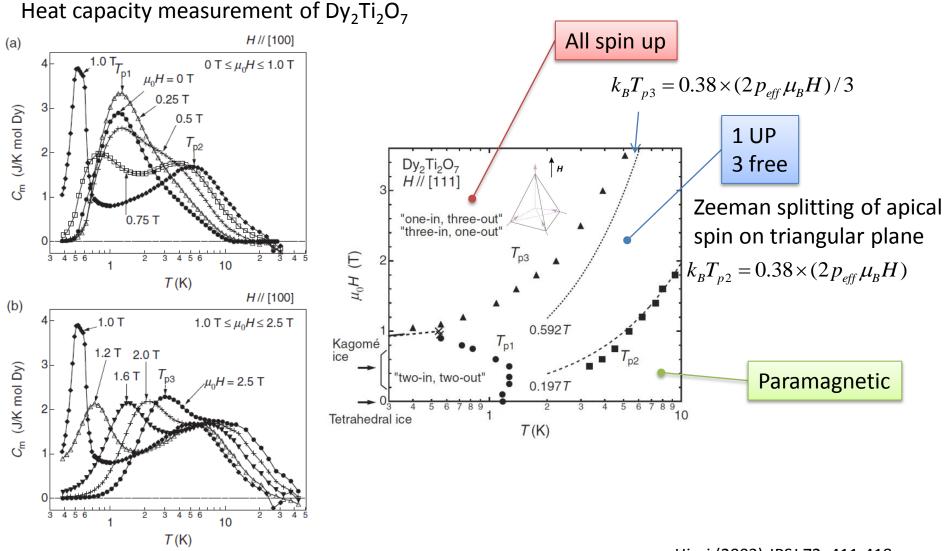
Matsuhira (2002) J. Phys.: Condens. Matter 14 L559


Residual entropy in kagomé ice


Rough estimation for 4 triangles

Number of spins	Ν
Number of triangle (3/2 spins/triangle)	Up <i>N</i> /3 : Down <i>N</i> /3
Spin configurations for up triangles	3 ^{N/3}
Allowed state for down triangle	$\left(\frac{3\times2\times2}{27}\right)^{N/3} = \left(\frac{4}{9}\right)^{N/3}$
Number of spins on kagomé plane	3/4
<i>S=k_B</i> ln <i>W</i> per Dy-mol	$\frac{3}{4}k_B \ln 3^{N/3} \left(\frac{4}{9}\right)^{N/3} = 0.0719R = 0.598 \frac{J}{K \cdot Dy - mol}$
Exact (dimer model on honeycome) R. Moessner and S.L. Sondhi (2001) PRB 63, 224401 M. Udagawa, M. Ogata and Z. Hiroi (2002) JPSJ 71, 2365	0.0808 <i>R</i> = 0.672 J/K Dy-mol

Kagomé Ice



Residual entropy of spin ice is confirmed. 0.65 J/K Dy-mol ~ S_{kagomé ice}0.67 J/K Dy-mol

Higashinaka (2003) PRB 68, 014415

Phase diagram: H [111]



Résumé

➢Ferromagnetic Heisenberg model with easy axis on pyrochlore turns to AF Ising spin requiring ice-rule.

$$H = \frac{D}{2} \sum_{K,\kappa} (\hat{\mathbf{d}}_{\kappa} \cdot \mathbf{S}_{K,\kappa})^2 + J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j = DN - \frac{J}{3} \sum_{\langle i,j \rangle} T_i T_j$$

>Pyrochlore oxides, $Ho_2Ti_2O_7$ and $Dy_2Ti_2O_7$ are the best two materials hosting spin-ice state.

Residual entropy of ice Rln(3/2)/2 = 1.68 J/K Dy-mol is fairly confirmed in spin ice.
 Pylochlore spin ice system is much simpler than water ice.
 Total entropy Rln(2), magnetic entropy dominant below k_BT < 10 J

>Neutron scattering experiments show evidence of long-ranged dipole interaction

"Spin ices are dipolar"

➢Anisotropic behavior of *M* and *C* under magnetic field along [100], [110], [111] can be well understood by the spin-ice model

➢Another frustrated state with residual entropy, kagomé ice state, is found under H // [111]