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Tunnel diode oscillator

First proposed by van Degrift, 1981 for high precision
measurements of resonance frequency, sample inserted into the
primary coil.

Figure: oscillating circuit, part of
the low-T electronics
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Principle of Calibration

How can we relate the resonance frequency and λ?

start with magnetic energy of coil (SI)

U =
1

2
LI 2 =

1

2

∫
~B · ~Hd3r

∆U =
1

2
(Ls − L0)I 2 =

1

2

∫
µ0
~M · ~H0d

3r

for the empty coil: 1
2LI

2 =
B2

0Vc

2µ0
,

eliminate I
for a small cariation in total inductance due to sample:
fs−f0
f0

= 1
2
Ls−L0
L0

Resulting frequency change with temperature

f (T )− f (Tmin) = − f0
2Vc

∫
Vs

M(λ(T ),H0)−M(λ(Tmin),H0)

H0
d3r
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An intuitive approach

M(λ) following Chia, 2004, Prozorov et al., 2000

1 take into account the the demagnetizing effect

M =
χ

1 + Nχ
Happlied

2 take into account the contribution of top and bottom surfaces

London equation for infinite
slab:
χ = M/H =[
1− λ

w tanh
(
w
λ

)]
χ ≈ −

[
1− λ

w

]

For a finite sample an
effective dimension can be
introduced [Prozorov
et al., 2000]

χ ≈ −
[
1− λ

R3D

]
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An intuitive approach

Conclusion for “Prozorov-G-factor”

Summary until now

f (T )− f (Tmin) = − f0
2Vc

∫
Vs

M(λ(T ),B0)−M(λ(Tmin),B0)

H0
d3r

M = − H

1− N

[
1− λ

R3D

]

By putting everything together

G =
2(1− N)R3D

f0

Vc

Vs
so that ∆λ = G∆f

demagnetizing factor
0 < N < 1

effective dimension
0.2w < R3D < 0.5w

filling factor Vs/Vc

7 / 43



TDO Geometric Factors and Calibration URu2Si2 Acknowledgements, Bibliography

An intuitive approach

Conclusion for “Prozorov-G-factor”

Summary until now

f (T )− f (Tmin) = − f0
2Vc

∫
Vs

M(λ(T ),B0)−M(λ(Tmin),B0)

H0
d3r

M = − H

1− N

[
1− λ

R3D

]

By putting everything together

G =
2(1− N)R3D

f0

Vc

Vs
so that ∆λ = G∆f

demagnetizing factor
0 < N < 1

effective dimension
0.2w < R3D < 0.5w

filling factor Vs/Vc

7 / 43



TDO Geometric Factors and Calibration URu2Si2 Acknowledgements, Bibliography

An intuitive approach

How to test this approach?

Sample dependance

G ∝ (1− N)R3D

Vs

λ(T )
λ(0) =[
∆(T )
∆(0) tanh ∆(T )

∆(0)
δscTc

2T

]−1/3

∆(T )
∆(0) = tanh

(
π
δsc

√
a
(
Tc
T − 1

))
where: ∆(0) = δsckBTc

[Tinkham, 1996, Prozorov and
Giannetta, 2006]
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An intuitive approach

Testing this approach

Something is wrong...
Demagnetizing effects exist but are greatly overestimated!
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A computational approach

And if we computed M(λ) directly?

Method developed by Brandt (see e.g. [Brandt and Miktik, 2000,
Brandt, 2001b]) for 1-dimensional problems (cylinder,...)

the basic equations (London)

−λ2µ0
~j = ~A = ~Aj + ~Aa (1)

µ0j = −∇2Aj (2)

Aa comes from the applied field Ha.
Aa = − r

2µ0Ha for the disk case.

Aj comes from the shielding
currents. (Eq. 2)

1 Solve eq. 2 with the appropriate Green’s function for the disk.

Aj(r) = −µ0

∫
d2r ′Qcyl(~r

′)j(~r ′)

2 Get equation for j

Aa = − r

2
µ0Ha = µ0

∫
d2r ′

[
Qcyl(~r ,~r

′)− λ2δ(~r −~r ′)
]
j(~r ′)

3 Solve this equation numerically on a grid.
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A computational approach

Compute on a grid...

Figure: Example of a simulation for a disk with radius r = 1, half-height
d = 0.15, λ = 0.1 on a small grid with 480 equally spaced gridpoints

− r
2µ0Ha =
µ0

∫
d2r ′

[
Qcyl(~r ,~r

′)− λ2δ(~r −~r ′)
]
j(~r ′)

Equations to be computed:

− ri
2Ha =

∑
j wj

(
Qij − λ2 δij

wi

)
jj

ri = 2
∑

j Q̃ij jj/Ha

ji
Ha

= 1
2

∑
j (Q̃−1)ij rj

M
H =

∑
i r

2
i

ji
Hwi
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A computational approach

Some problems and some solutions

Use a grid that gets finer at the borders (unequal weights)
Remove corner points to model realistic corners
Use the same number of gridpoints for all computations, hope
for obtaining relative G-factors.
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Remove corner points to model realistic corners
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A computational approach

Results of computational approach for Al-disks

f (T )− f (Tmin) = − f0
2Vc

(∫
Vs

M(λ(T ),H0)/H0d
3r −

∫
Vs

M(λ(Tmin),H0)/H0d
3r

)
f (T )− f (Tmin) ≈ f0

2Vc
Vs

dM

dλ
(λ(Tmin)− λ(T ))/H0

Let’s approximate dM
dλ as the slope of a linear fit
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A computational approach

Results of computational approach for Al-disks

Check obtained relative G-factors

Reasonable agreement!
However, absolute values cannot be reproduced.
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A computational approach

Trying on the URu2Si2-samples

#E2 A: G = 250 Å/Hz found, G ≈ 200 Å/Hz probably correct!
#E2: G = 52 (or 79) Å/Hz found, G ≈ 80 Å/Hz probably correct!

But there is a problem

Predicted G-factor depends on
λ/w .
An Al-sample and an U-sample
of same shape have different
geometric factors.

Possibly due to change in relative
gridpoint-spacing.
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dM
dλ for λ appropriate for
URu2Si2:
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15 / 43



TDO Geometric Factors and Calibration URu2Si2 Acknowledgements, Bibliography

A computational approach

Trying on the URu2Si2-samples

#E2 A: G = 250 Å/Hz found, G ≈ 200 Å/Hz probably correct!
#E2: G = 52 (or 79) Å/Hz found, G ≈ 80 Å/Hz probably correct!

But there is a problem

Predicted G-factor depends on
λ/w .
An Al-sample and an U-sample
of same shape have different
geometric factors.

Possibly due to change in relative
gridpoint-spacing.

dM
dλ for λ appropriate for
Aluminium:
GAl = 79!
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Final (“easy”) solution

Adapted final solution

Cut an Al-sample of the same size/shape as our best
URu2Si2-sample (#E2 B) and measure it:
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Some properties

URu2Si2

Hidden order transistion at
Th = 17.5K

Superconducting below 1.4K

Figure: taken from Ref. [Palstra
et al., 1985]

Hidden order: We don’t know
the Brillouin-zone, FS not clear

Thermal conductivity
measurements by Kasahara
et al.

Specific heat measurements
by Yano et al.

∆k ∝ kz(kx + iky ) (chiral
d-wave)
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Some properties

Hc1 and mysterious kink

See [Okazaki et al., 2009]
Superfluid density extracted from Hc1
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Experimental

Our samples

ultraclean (RRR ∼ 700)

Cut one larger cristal into two.
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Experimental

How to get ∆λab and ∆λc

Measure frequency shift in 2 different geometries:

∆fH||a =
f0Vs

2Vc

(
∆λab
d

+
∆λc
w

)
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Experimental

How to get ∆λab and ∆λc

Measure frequency shift in 2 different geometries:

∆λab = G∆fH||c

∆fH||a =
f0Vs

2Vc

(
∆λab
d

+
∆λc
w

)
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Experimental

Result

We can find the change in penetration depth:

But strangely we get different critical temperatures.
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Two-band superfluid density: the semiclassical model

Relating electronic properties to the band structure

Example for conductivity [Chandrasekhar and Einzel, 1993]

~vk = ~−1∇kεk

δ~kE = e~Eτk/~

δεk =
∂εk

∂~k
· δ~kE

δεk = ~vkeτk~E

~j ∝
∫

d3k~vk (f (εk − δεk)− f (εk + δεk))
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Relating electronic properties to the band structure

Example for conductivity

~vk = ~−1∇kεk

δ~kE = e~Eτk/~

δεk =
∂εk

∂~k
· δ~kE

δεk = ~vkeτk~E

~j ∝
∫

d3k~vk (f (εk − δεk)− f (εk + δεk))︸ ︷︷ ︸
2
(
− ∂f
∂εk

)
δεk
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Relating electronic properties to the band structure

Example for conductivity

~vk = ~−1∇kεk

δ~kE = e~Eτk/~

δεk =
∂εk

∂~k
· δ~kE

δεk = ~vkeτk~E

~j ∝
∫

d3k

(
− ∂f

∂εk

)
τk(~vk~vk) · ~E ⇒ σim ∝

∮
dSF

vFivFm
vF

τF

For (quasi)free electrons and isotropic τ we find Drude: σ = ne2τ
m∗
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Two-band superfluid density: the semiclassical model

Let’s do the same for the supercurrent

[Chandrasekhar and Einzel, 1993]

Normal conductivity

~δ~kE = e~Eτk

δεk =
∂εk

∂~k
· δ~kE

δεk = ~vkeτk~E

Supercurrent

~δkA = −e~A

δεk =
∂εk

∂~k
· δ~kA

δεk = −e~vk~A

London equations:

m~vs= −e~A

µ0
~j = λ−2~A

λ−2 =
µ0ne

2

m∗

Normal state current: ~j ∝
∫
d3k

(
− ∂f
∂εk

)
τk(~vk~vk) · ~E

Supercurrent: ~js ∝ −
∫
d3k

[
−
(
∂nk
∂εk
− ∂f (Ek )

∂Ek

)]
(~vk~vk) · ~A

nk is the single particle occupation of the state k

f (Ek) is its occupation by quasiparticles. Ek =
√
ε2
k + ∆2

k

Only superconducting electrons contribute to js .
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Two-band superfluid density: the semiclassical model

How do we get the superfluid-density now?

~js ∝ −
∫

d3k

[
−
(
∂nk
∂εk
− ∂f (Ek)

∂Ek

)]
(~vk~vk) · ~A

We use:
d3k = dSFdεk

~vF
dεk = 2 dεk

dEk
dEk

First (diamagnetic) term:
∮
dSF

~vF~vF
vF

Second (paramagnetic) term:
∮
dSF

~vF~vF
vF

2
∫ dεk

dEk
dEk

∂f (Ek )
∂Ek

Final result µ0
~j = −λ−2~A [Prozorov and Giannetta, 2006]

λ−2
ij (T ) =

µ0e
2

4π3~

∮
FS

dSk

[
v iF v

j
F

|vF |

(
1 + 2

∫ ∞
∆(k)

dEk
∂f (Ek)

∂Ek

N(Ek)

N(0)

)]

We can now compute the superfluid density

ρii =

(
λii (0)

λii (T )

)−2
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∫ dεk

dEk
dEk

∂f (Ek )
∂Ek

Final result µ0
~j = −λ−2~A [Prozorov and Giannetta, 2006]

λ−2
ij (T ) =

µ0e
2

4π3~

∮
FS

dSk

[
v iF v

j
F

|vF |

(
1 + 2

∫ ∞
∆(k)

dEk
∂f (Ek)

∂Ek

N(Ek)

N(0)

)]

We can now compute the superfluid density

ρii =

(
λii (0)

λii (T )

)−2
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Applying to our model of URu2Si2

What does it look like in our case?

λ−2
ij (T ) =

µ0e
2

4π3~

∮
FS

dSk

[
v iF v

j
F

|vF |

(
1 + 2

∫ ∞
∆(k)

dEk
∂f (Ek)

∂Ek

N(Ek)

N(0)

)]

ρaa(T ) =

∮
FS ,h dSh

(vh
F ,x)

2

|vh
F |

(
1− 1

2T

∫∞
0 dε cosh−2

(√
ε2+|∆h(~k)|2

2T

))
∮
FS ,h dSh

(vh
F ,x)

2

|vh
F |

+
∮
FS ,e dSe

(v e
F ,x)

2

|v e
F |

+

∮
FS ,e dSe

(v e
F ,x)

2

|v e
F |

(
1− 1

2T

∫∞
0 dε cosh−2

(√
ε2+|∆e(~k)|2

2T

))
∮
FS,h dSh

(vh
F ,x)

2

|vh
F |

+
∮
FS ,e dSe

(v e
F ,x)

2

|v e
F |

a little scary.
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Contributions from electron- and hole-FS
cannot be separated in general.

k-dependance from gapstructure (T dependent)
and from bandstructure (T-independent)!
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Applying to our model of URu2Si2

How do we get information about Fermi-velocities?

Using Hc2

Hc2 =
Φ0

2πξ2

ξ =
~vF
π∆

We need:
va
F ,e

va
F ,h

,
v c
F ,e

va
F ,e

use the “virtual upper critical field”
(see [Kasahara et al., 2007]) for the
light hole band

Correct for the size of gaps

vaF ,e
vaF ,h

=

√
Hs

H
H||a
c2

∆0,e

∆0,h

Correct for point nodes in the electron
FS (see [Miranović et al., 2001])

v cF ,e
vaF ,e

=
H

H||a
c2

H
H||c
c2

· 1.66
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Fitting data

Let’s apply this to data

Parameters needed:

Shape of FS:
kh
F ,c

kh
F ,a

,
ke
F ,c

ke
F ,a

Anisotropy of vF for each FS

Ratio of vF of the 2 bands

Fitting parameters:

Gapvalues ∆0 (α-model)

anisotropy of e-FS
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Fitting data

And a different gap structure?

Try to find the nodel structure in a 2-band model with equal
volume of the FS’s
vspace10cm

32 / 43



TDO Geometric Factors and Calibration URu2Si2 Acknowledgements, Bibliography

Fitting data

And a different gap structure?

Try to find the nodel structure in a 2-band model with equal
volume of the FS’s
Both isotropic s-wave

∆h = ∆h(T )

∆e = ∆e(T )
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Fitting data

And a different gap structure?

Try to find the nodel structure in a 2-band model with equal
volume of the FS’s
hole-FS: only line node, electron-FS: fully gapped

∆h = ∆h(T ) cos(θ)

∆e = ∆e(T )
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Fitting data

And a different gap structure?

Try to find the nodel structure in a 2-band model with equal
volume of the FS’s
hole-FS: line node and point nodes, electron FS: point nodes

∆h = ∆h(T )2 cos(θ) sin(θ)

∆e = ∆e(T ) sin(θ)
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Fitting data

And a different gap structure?

Try to find the nodel structure in a 2-band model with equal
volume of the FS’s
Both line node and point nodes

∆h = ∆h(T )2 sin(θ) cos(θ)

∆e = ∆e(T )2 sin(θ) cos(θ)

32 / 43
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Fitting data

What about Fermi-liquid corrections?

md : dynamic mass, for example from cyclotron resonance

m∗: heavy mass, from transport measurements

We estimate λ(0) using cyclotron resonance mass.

λ(0) =

(
µ0ne

2

md

)−1/2

We get λa(0) = 0.66µm and λc(0) = 0.5µm, smaller than
λ ≈ 1µm from µSR and λa(0) > λc(0) in contrast to
Hc1-measurements.
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Fitting data

May Fermi-liquid corrections play a role?

λ−2(T ) =
µ0ne

2

md

[
1− (1 + F s

1/3)Y (T )

1 + (F s
1/3)Y (T )

]
Generalize this to include bandstructure (quite a long formula)

Set all F s
1 = 6
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May Fermi-liquid corrections play a role?

λ−2(T ) =
µ0ne

2

md

[
1− (1 + F s

1/3)Y (T )

1 + (F s
1/3)Y (T )

]
Generalize this to include bandstructure (quite a long formula)

The F s
1 fixed by mass ratios m∗/md , all other parameters free

Set all F s
1 = 6
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Fitting data

May Fermi-liquid corrections play a role?

λ−2(T ) =
µ0ne

2

md

[
1− (1 + F s

1/3)Y (T )

1 + (F s
1/3)Y (T )

]
Generalize this to include bandstructure (quite a long formula)

Fit F s
1 starting from 0

Set all F s
1 = 6
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Fitting data

May Fermi-liquid corrections play a role?
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Fitting data

Some conclusions

The temperature dependent penetration depth can be
measured accurately with TDO technique
Estimating the geometrical factor is very difficult

We can reliably extract the superfluid density ρa and ρc of
URu2Si2
The data can be reasonably well fitted by the two band model
with kz(kx + iky ) gap symmetry of Kasahara et al., 2007
A gap structure with less nodes does not fit the data well
FL-corrections possibly play a role in the T-dependance of λ,
difficult to be sure
Unknown Fermi-surface implies many difficulties.
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