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Tunnel diode oscillator

First proposed by van Degrift, 1981 for high precision
measurements of resonance frequency, sample inserted into the
primary coil.
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Principle of Calibration

How can we relate the resonance frequency and \?

@ start with magnetic energy of coil (SI)
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°

Principle of Calibration

How can we relate the resonance frequency and \?

@ start with magnetic energy of coil (SI)

IR TR N R ViR
U—2LI—2/BHdr /11

1 1 V- H T
AU = 3(Ls = Lo)I* = 5 /MOM - Hod®r 1
e for the empty coil: %L/2 = Bi‘gcv
eliminate /

o for a small cariation in total inductance due to sample:
fs—fo _ 1Ls—Lo
fo T 2 L

Resulting frequency change with temperature

d3r

f( T) _ f(Tmin) - _ fO /\; M(A( T)’ HO) — M()‘(Tmin)v HO)

2V, Ho
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An intuitive approach

M(A) following Chia, 2004, Prozorov et al., 2000

@ take into account the the demagnetizing effect

M = mHapplied
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An intuitive approach

M(A) following Chia, 2004, Prozorov et al., 2000

© take into account the the demagnetizing effect

X
=17 Nx ————Happlied

Demagnetizing factor N, (see [Brandt, 2001a])

Strictly defined only for ellipsoids (homogeneous M)

Hintern = Happlied - NM(Hintern; N = O)
M(Hintern; N = O) = M(Happlied; N)
M(Hintern; N = O) = XHintern

An effective demagnetizing factor can also be defined (via average
magnetization) for other shapes.

See Refs. [Osborn, 1945] for the general ellipsoid, [Chen et al.,
1991] for cylinders, or [Pardo et al., 2004] for rectangular prisms.
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M(A) following Chia, 2004, Prozorov et al., 2000

@ take into account the the demagnetizing effect

X
= mHapplied
@ take into account the contribution of top and bottom surfaces
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An intuitive approach

M(A) following Chia, 2004, Prozorov et al., 2000

@ take into account the the demagnetizing effect

X
= 1+ NX Happlied

@ take into account the contribution of top and bottom surfaces
London equation for infinite Vo For a finite sample an
slab: effective dimension can be
x=M/H= —[||"  introduced [Prozorov
[1— 2 tanh gg)] et al., 2000] )
x~—=[1-4] = X”—[—@

6/43
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An intuitive approach

M(A) following Chia, 2004, Prozorov et al., 2000

@ take into account the the demagnetizing effect

T 14 Ny

Happlied

@ take into account the contribution of top and bottom surfaces

London equation for infinite
slab:

xX=M/H=
[1 - tanh (5)]
x~=[1-75]

® We linearize:

X
M=-—2%_H
1-N

W

’H

For a finite sample an
effective dimension can be
introduced [Prozorov

et al., 2000]

~ |1 - A
X~ [ Rsp
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An intuitive approach

M(A) following Chia, 2004, Prozorov et al., 2000

© take into account the the demagnetizing effect

X
=17 Nx ————Happlied
@ take into account the contribution of top and bottom surfaces
Llorl;('ion equation for infinite g For a finite sample an
siab: ’H effective dimension can be
introduced [Prozorov
et al., 2000]

N PR
-1 7]
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An intuitive approach

Conclusion for “Prozorov-G-factor”

Summary until now

A(T) = F(Toin) =~ [ TR = A o) ) g
H A
M="1w [1_ R3D]
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An intuitive approach

Conclusion for “Prozorov-G-factor”

Summary until now

A(T) = (i) = - [ MOALT):Bo) = MO ). Bo)
M:_lfN[l_RjD] J
By putting everything together ° ge:al\%rftilzing factor
G= ME so that A\ = GAf ’ gf;e:/tzels;:?s(;?w

fo Vs

o filling factor V/V,
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An intuitive approach

How to test this approach?

Sample dependance

2d=175um

2d=55um
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An intuitive approach

How to test this approach?

Sample dependance

1 o

03

08

07
N/? 08 sample #3 (2d=175pm)
%; 0s
~—~n4 G=10.42504 /Hz
03 Te=1.140K
02 A(0)=5004
0.1 Jge=1.7T6
0

o 0.1 02 03 04 05 0B 07 08 08 1
T/Te

1/3
T T 6$CTC
[ ((0)) tanh A((O)) 2T ]
A
A((O)) tanh a( TTC ))

where: A(0) = 55CkB T,

[Tinkham, 1996, Prozorov and
Giannetta, 2006]
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An intuitive approach

Testing this approach

Calibration factor
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#2 3 —o— Elbert E. M. Chia, Phd thesis, 2004
L N M our data on Al disks
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An intuitive approach

Testing this approach

Calibration factor

116 T T T T
#2 3 —o— Elbert E. M. Chia, Phd thesis, 2004
L N M our data on Al disks
1,44 \ —— volume ratio V. /V,
\
21,24 \ i
Zg \
> 0-0-0m0-, \, #3
Q10 T |
Oa \,_\ 0\0\—4
©” 08 AN 1
N #1
0.6 > " 1
\;
0!4 T T T ’I
0,0 0,1 0,2 0,3 0,4

b/a (a=500um)

Something is wrong...
Demagnetizing effects exist but are greatly overestimated!
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And if we computed M(\) directly?
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And if we computed M(\) directly?

Method developed by Brandt (see e.g. [Brandt and Miktik, 2000,
Brandt, 2001b]) for 1-dimensional problems (cylinder,...)

the basic equations (London) @ A, comes from the applied field H,.
As = —3HoH, for the disk case.

gl = —VzAj (2) currents. (EQ- 2)

@ A; comes from the shielding
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the basic equations (London) @ A, comes from the applied field H,.
As = —3HoH, for the disk case.

gl = —VzAj (2) currents. (EQ- 2)

@ A; comes from the shielding

@ Solve eq. 2 with the appropriate Green's function for the disk.

A(r) = — 1o / o' Qey(7)i(7')
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And if we computed M(\) directly?

Method developed by Brandt (see e.g. [Brandt and Miktik, 2000,
Brandt, 2001b]) for 1-dimensional problems (cylinder,...)

the basic equations (London) @ A, comes from the applied field H,.
As = —3HoH, for the disk case.

e = —VZAJ' (2) currents. (Eq. 2)

@ A; comes from the shielding

@ Solve eq. 2 with the appropriate Green's function for the disk.

A(r) = — 1o / o' Qey(7)i(7')

O Get equation for j

Av =~ oy = Mo/dzr' [Qei(7, 7') — N26(7 — 7)) J(7)
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A computational approach

And if we computed M(\) directly?

Method developed by Brandt (see e.g. [Brandt and Miktik, 2000,
Brandt, 2001b]) for 1-dimensional problems (cylinder,...)

the basic equations (London) @ A, comes from the applied field H,.
As = —3HoH, for the disk case.

e = —VZAJ' (2) currents. (Eq. 2)

@ A; comes from the shielding

@ Solve eq. 2 with the appropriate Green's function for the disk.
A1) = =10 [ &P Quu()i(F)
O Get equation for j
As =~ Spioky = po [ &1 [Qou(7.7) ~ X5(7 ~ ) (7)

© Solve this equation numerically on a grid.
11/43
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A computational approach

Compute on a grid...

120

100

[j1/H

01

z/r

Figure: Example of a simulation for a disk with radius r = 1, half-height
d =0.15, A = 0.1 on a small grid with 480 equally spaced gridpoints
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A computational approach

Compute on a grid...

—5toHa =
- Mofd r [Qcy/(_’a ) )‘25(F )]J(F/)

> 015 | {20
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A computational approach

Compute on a grid...

—shoHs =
80 MOfd r [QC)//(_” ) - )\25(F_ F/)] J(F/)

Equations to be computed:
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A computational approach

Compute on a grid...

—spoHs =
80 MOfd r [QC)//(_” ) - )\25(F_ F/)] J(F/)

Equations to be computed:

o —4H, =, w (@ — W) j
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A computational approach

Compute on a grid...

—5oHs =
80 MOfd r [QC)//(_” )_ )\25(F_ F/)] J(F/)

Equations to be computed:

o —4H, =, w (@ — W) j

@ ri= 2Zj éijf:i/Ha
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A computational approach

Compute on a grid...

—5oHs =

Mofd 1 [Qeyi(F.7) = A26(F = 7)] i(F)

Equations to be computed:

° —3Hs =Y w (Q5— V%)

@ ri= 2Zj éijf:i/Ha
° /{T'a = %Zj(é_l)ijrj
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A computational approach

Compute on a grid...

w —hoHs =
80 MOfd r [QC)//(_” ) - )\25(F_ F/)] J(F/)

Equations to be computed:

° —3H ZZJ-WJ(QU*V%’”;)J)
° ri:2zj' éijf:i/Ha

=35, (@ in
:Z 2J:

Iz I\K
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A computational approach

Compute on a grid...

w —hoHs =
80 MOfd r [QC)//(_” )_ )\25(F_ F/)] J(F/)

1jl/H

Equations to be computed:

° —3Hs =Y w (Q5— V%)

sdess01 Magnetization M ] -
5,46845 - ° . q [+ ] rl frd 22] QI_]./_I/Ha
546840 o .
5,46835 4 H ~
s o Ji 1 =1y)..,.
] o fr=732;(Q7)jr
5,46825 4
M 2 i
546820 - ° Q - — Z . <1 WI
R A H 11 H
A(nm)
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A computational approach

Some problems and some solutions

@ In realistic cases A < w, so very fine grids are needed.
Use a grid that gets finer at the borders (unequal weights)

01

0.9 08 07 086 05 04 03 0.2
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A computational approach

Some problems and some solutions

@ Use a grid that gets finer at the borders (unequal weights)
@ The divergence in the corner gets worse with finer grids.
Remove corner points to model realistic corners

012
01
0.08: in
b | Il
oo e
Il
0.04
Il
002 [
03 035 0.4 0.45 05
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Some problems and some solutions

@ Use a grid that gets finer at the borders (unequal weights)
@ Remove corner points to model realistic corners
@ M still depends on the number of grid points.
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A computational approach

Some problems and some solutions

@ Use a grid that gets finer at the borders (unequal weights)

@ Remove corner points to model realistic corners

@ M still depends on the number of grid points.
Use the same number of gridpoints for all computations, hope
for obtaining relative G-factors.

665

660

6551

= 6501

6451

640+

635
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A computational approach

Some problems and some solutions

@ Use a grid that gets finer at the borders (unequal weights)

@ Remove corner points to model realistic corners

@ Use the same number of gridpoints for all computations, hope
for obtaining relative G-factors.

Figure: Example of the final grid with ~ 2000 gridpoints
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A computational approach

Some problems and some solutions

@ Use a grid that gets finer at the borders (unequal weights)

@ Remove corner points to model realistic corners

@ Use the same number of gridpoints for all computations, hope
for obtaining relative G-factors.

Currentprofile: 3= 0.5 b= 0.0675 alpha= 001 lambda= 9e-005 N= 648 M= 052003

3600
3000
2500
2000
1500

1000
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A computational approach

Some problems and some solutions

@ Use a grid that gets finer at the borders (unequal weights)

@ Remove corner points to model realistic corners

@ Use the same number of gridpoints for all computations, hope
for obtaining relative G-factors.

Currentprofile: a= 1 b= 0.345 alpha= 0.07 lambda= 0.0007 N= 2634 W= 5 4685

4000
3000
2000

1000
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A computational approach

Results of computational approach for Al-disks

F(T) = F(Towin) = ( / MOT). Ho)/ Hodr = | MON(Toi).

f dM S
—Ovsﬁ()\(Tmin) = A(T))/Ho

dM

f(T) = f(Tmin) =~

Let's approximate 73~ as the slope of a linear fit
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A computational approach

Results of computational approach for Al-disks

Let's approximate % as the slope of a linear fit

5,46850 4 a=1, b=0.375, =0.01, N =85

5.46845 dM/di~-2.59E-6

5,46840 —

5,46835

M[a’]

5,46830 -
dM/dr~-3.95E-6
5,46825 —

5,46820 —

T T T T T T T T 1
40 50 60 70 80 90 100 110 120 130

A(nm)
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A computational approach

Results of computational approach for Al-disks

Let's approximate % as the slope of a linear fit

421470 4 a=1,b=0.175, «=0.01, N =85

dM/dr~-1.92E-6
4,21465

4,21460

M[a’]

4,21455
dM/d)~-2.93E-6

4,21450

4'21445 T T T T T T T T 1
40 50 60 70 8 90 100 110 120 130

A(nm)
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A computational approach

Results of computational approach for Al-disks

Let's approximate % as the slope of a linear fit

3,20316
a=1, b=0.055, a=0.01, N =85
3,20312 dM/dy. ~-1.33E-6
3,20308
=
=
3,20304
dM/d). ~ -2.05E-6
3,20300
T T T T

T T T T 1
40 50 60 70 80 90 100 110 120 130
A(nm)
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A computational approach

Results of computational approach for Al-disks

Check obtained relative G-factors

Calibration factor

T T T
m #2 —o— Elbert E. M. Chia, Phd thesis, 2004

144 - A from simulations following Brandt

A W our data on Al disks

00 o1 02 03 04 05
b/a (a=500um)

@ Reasonable agreement!
@ However, absolute values cannot be reproduced.
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Trying on the URu,Sir-samples
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A computational approach

Trying on the URu,Sir-samples

#E2_A: G = 250 A/Hz found, G ~ 200 A/Hz probably correct!
#E2: G =52 (or 79) A/Hz found, G ~ 80 A/Hz probably correct!

4 08061 0Mdata_=51h=15alpha=0.0001N=3080k=1 txt

w10

(3=251.0882

L L L L L L L
ns 055 ne 06s 07 07s na 0.a8s 09
lambda
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But there is a problem

Predicted G-factor depends on
A/ w.
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A computational approach

Trying on the URu,Sir-samples

#E2_A: G = 250 A/Hz found, G ~ 200 A/Hz probably correct!
#E2: G =52 (or 79) A/Hz found, G ~ 80 A/Hz probably correct!

Lqgt DBUB10Mdata,=1396=17 Salpha=0 D001N=1540k=1 1xt

But there is a problem

Predicted G-factor depends on

A w. =

An Al-sample and an U-sample

of same shape have different

geometric factors. A5 ok o5 om o7 om o5 0% o9

% for X appropriate for
URU25i2:
Gy =52

Possibly due to change in relative
gridpoint-spacing.
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A computational approach

Trying on the URu,Sir-samples

#E2_A: G = 250 A/Hz found, G ~ 200 A/Hz probably correct!

#E2: G =52 (or 79) A/Hz found,

But there is a problem

Predicted G-factor depends on
A/ w.

An Al-sample and an U-sample
of same shape have different
geometric factors.

Possibly due to change in relative
gridpoint-spacing.

G ~ 80 A/Hz probably correct!

o ,=139b=17 5alpha=0. 1.axt

6=79.0478

1
005 0055 006 0065 007 0075 008 0085 009
lambda

% for X appropriate for
Aluminium:
Gp = 79!
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Adapted final solution

Cut an Al-sample of the same size/shape as our best
URu,Sip-sample (#E2_B)
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16 /43



Geometric Factors and Calibration
°

Final (“easy”) solution

Adapted final solution

Cut an Al-sample of the same size/shape as our best
URu3Siz-sample (#E2_B) and measure it:

1 Al #4

T =1.17K
0.8¢ 1

06 G=314 A/Hz

0.4¢

0.2r

T
C
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Some properties

@ Hidden order transistion at

T, =17.5K
@ Superconducting below 1.4K
L

It (mJ I mol .u.k?)

Figure: taken from Ref. [Palstra
et al., 1985]
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T, =17.5K
@ Superconducting below 1.4K
L

It (mJ I mol .u.k?)

Figure: taken from Ref. [Palstra
et al., 1985]

Hidden order: We don’'t know

the Brillouin-zone, FS not clear
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Some properties

@ Hidden order transistion at
T, = 175K

@ Superconducting below 1.4K

It (mJ I mol .u.k?)

Figure: taken from Ref. [Palstra
et al., 1985]

Hidden order: We don’'t know
the Brillouin-zone, FS not clear

URu3Sip
0

@ Thermal conductivity
measurements by Kasahara
et al.

@ Specific heat measurements
by Yano et al.
Ay o< ky(ky + iky,) (chiral
d-wave)
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Some properties

H.1 and mysterious kink

See [Okazaki et al., 2009]
Superfluid density extracted from H¢g

1 ‘ ‘ . ‘

L
o9l - = p, (from Hm-measurement)

1 L] = p, (from Hm measurement)

08

07 u [ il
086 u q
v 05- - "a E
04t 1
03r = [ 4
0.2 .

L L
0.1 l.... L3




Experimental

Our samples

e ultraclean (RRR ~ 700)

@ Cut one larger cristal into two.

3 %
. o A
T ‘HnmeuhMM'IInIH\U\ "
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Experimental

How to get A\,, and A\,
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Measure frequency shift in 2 different geometries:
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How to get A\,, and A\,

Measure frequency shift in 2 different geometries:

=
.
v

—
I
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Experimental

How to

get A\, and AN,

Measure frequency shift in 2 different geometries:

Afia

)‘c Aal:

o fOVS A/\ab + A)\c
2V, d %
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Experimental

Result
We can find the change in penetration depth:

16F | o AM
a
140 | © My
— low-T power fit
120 | —ow-T power fit
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Experimental

Result

We can find the change in penetration depth:
But strangely we get different critical temperatures

250 | o M, ,é J
° MC °

21 | —low-T power fit °© i
— low-T power fit °
°
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Ve = h 1V ex

5/?5 = eETk/h

Oex -
(56 = — - (Sk
k ok E

551( = VkeTkE
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Relating electronic properties to the band structure

Example for conductivity

Vi = hilvkek
(5/?5 = eETk/h

3ek
0€) = .5k,
k 8/( E

56k = \7ke7-kE

Jox /d3k\7k (f(ex — bex) — F(ex + dex))

2( Oey )661‘
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Two-band superfluid density: the semiclassical model

Relating electronic properties to the band structure

Example for conductivity

Vi = h_lvkek

5EE = eETk/h N :V—H

Oe, - " '
66 = = ° (5/( hex
k Ok E :‘4_&
56;( = VkeTkE . '
Fee / ik <_ sy VEIVEm
VF

. 5 - . 2
For (quasi)free electrons and isotropic 7 we find Drude: o = "=~

4
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Let's do the same for the supercurrent

[Chandrasekhar and Einzel, 1993]

L g} Ve e
hoke = eEy hoky = —eA e 624
8ek 8ek foj = A°A
5 = 5k' 6 = 6k
tok T RV Bl
(56k = VkeTkE 5€k = —eV,J\’ m*
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Let's do the same for the supercurrent

[Chandrasekhar and Einzel, 1993]

L } Ve oA
hoke — eEry hoka = —eA s 624
Hoj = A A

G — 9ek . Okg e = Ock - Oky
ok ok \-2 _ Hone
(56k = VkeTkE 5€k = —eV,J\’ m*

o Normal state current: j o [ d3k (—%) Ti(Vk Vi) - E
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Two-band superfluid density: the semiclassical model

Let's do the same for the supercurrent

[Chandrasekhar and Einzel, 1993]

. . . V.= —eA
hoke = eEr hoka = —eA e
D - Be - foj = A"A
€k ok E €k ok A e Mo”e2
(56k = VkeTkE 56;( = —e\_/’k/a m*

v o’

o Normal state current: j [ d3k (—%) Tk (Vi Vi) - E
e Supercurrent: j; ox — [ d®k [— (% - 82(5) } (Vk Vi) - A

ny is the single particle occupation of the state k

:

f(Ex) is its occupation by quasiparticles. Ex = y/e2 + A?

Only superconducting electrons contribute to js.
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How do we get the superfluid-density now?

- on Of (E, Lo\ 7
J2 X _/d3k [_ (ae: B a(E:)ﬂ (%) - A

o First (diamagnetic) term: § dSg -

We use:
d3k _ dSgpdey
—  hvg
d
dex = 29 dE;

27

43



URu3Sip
ooooe

Two-band superfluid density: the semiclassical model

How do we get the superfluid-density now?

We use:

dSgde
. on,  Of(Ex) o 5 d3k = hF K
S - C’3l( - . /x VF
Is / { (aek g, )| (W) dex = 295 dE,

e First (diamagnetic) term: § dSp*C M
@ Second (paramagnetic) term: deF Vel 3 f dek < dEy ag(EEkk)
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Two-band superfluid density: the semiclassical model

How do we get the superfluid-density now?

We use:

dSgde
. on,  Of(Ex) o 5 d3k = hF K
S - (i3k' - -/4 VF
Is / { (aek g, )| (W) dex = 295 dE,

e First (diamagnetic) term: § dSp*C VFVF
@ Second (paramagnetic) term: deF Vel 3 f dek < dEy 82(,:%)

Final result 110f = —A~2A [Prozorov and Giannetta, 2006]

: vl _ Of(Ex) N(E)
A72T:“°e]§ dSi | = 1+2/ dE T k) Tk
i (7= 4p s |VF| Ay OEc N(0)

(Only!) for quasi-free electrons and “simple” geometry we find

fione?

m*

M0)2 =
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Two-band superfluid density: the semiclassical model

How do we get the superfluid-density now?

We use:

dSgde
. on,  Of(Ex) o 5 d3k = hF K
S - (i3k' - -/4 VF
Is / { (aek g, )| (W) dex = 295 dE,

e First (diamagnetic) term: § dSp*C VFVF
@ Second (paramagnetic) term: deF Vel 3 f dek < dEy 82(,:%)

Final result 110f = —A~2A [Prozorov and Giannetta, 2006]

5 uoe ViVj > Of (Ex) N(Ex)
A (T) = ]{stk [ |ve| <1+2/A(k)dEk 0E,  N(0) )]

We can now compute the superfluid density

o <AA,-7((3))>_2
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_ 2 Ll o Of(Ec) N(E)
AT2(T) = Mo ds, | YEVE 1+2/ dE, K K
() “1lvel Ay OEc N(0)
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Applying to our model of URu;Si,

What does it look like in our case?

. ? A < OF(Ee) N(Ex)
2 _ Ho€ k k
NA(T) = o dSk[ <1+2/A(k) ag 2 Tk

vh ) _
fFShdSh(FX) (1—27 o decosh™ 2<€2+Ah(k)|2>>

‘VF|

paa(T)

2

fFShdSh(| +.7€FSed5(|e|)

Frs e dSe (V\C:I) <1 — 5= [57 decosh™? (MW)>
, F

2T
()

_l’_

(ve,)’
fFShdSh VE "‘fFSe eﬁﬁ

a little scary.
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Applying to our model of URu;Si,

What does it look like in our case?

)’ o0 - €2 K)|2
$rs.n dsh(r\,’hX)< — 5= 57 decosh™? <+2$h(k)>>

(v2.)’ % Y SENINGE:
2§F5,e dseﬁ 1— % fo de cosh YE eIl

(v.)° (v£.)°
s p dSh=u5 + 2 $ps o dSe s

‘VF|

29 /43



URu3Sip

Applying to our model of URu;Si,

What does it look like in our case?

(v2.)’ 2 [ VDK
st’hdShﬁ 1—ﬁ o decosh™ [ YL 2Ok

(v2.)° AYD)
$rs.n S e +2 s o dSe 08

(v£.) - Y NERINTE
2 fFS,e dSe ﬁ'ﬁ‘ 1-— % Jo  decosh S

f dS (vﬁx)2 _}_2% ds (Vﬁ,x)Q
FS,h 92h FS,e 92 Tvel

‘VF|

‘n<m

+

@ Contributions from electron- and hole-FS
cannot be separated in general.

e k-dependance from gapstructure (T dependent)
and from bandstructure (T-independent)!
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Applying to our model of URu;Si,

What does it look like in our case?

Vh 2 . -
fFS,hdSh(rv’hX)< —% o decosh™ 2<2+2$h(k)2>>

2
Ve ~00 _ 24 ALK
2§F5,e dse% <1 — 57 [o7 decosh 2 <2|T()>)

(v2)’ (v,)
Frs.n dSh=ar— + 2 $ps o dSe™; i

‘VF|

@ Contributions from electron- and hole-FS
cannot be separated in general.

e k-dependance from gapstructure (T dependent)
and from bandstructure (T-independent)!
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vf- v,_c-
We need: 22, 5=
VEh VFe
00
2 _ ———
<7 ome2
€= hvg
1A
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Applying to our model of URu;Si,

How do we get information about Fermi-velocities?

va vE
. F, F,
We need: =< £

VB VEe
@ use the “virtual upper critical field”
O (see [Kasahara et al., 2007]) for the
27 o2 light hole band
€= hvp @ Correct for the size of gaps
TA
a
VF,e o Hs AO,e
2 08— VE b HCHzHa Do,
« ]
s L]
%0.6— ' ¢ T—
S H,
T H
FJo_4‘, o Hllg
S T e Hlilc

00 02 04 06

(HOH)I/Z (T1/2)
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Applying to our model of URu;Si,

How do we get information about Fermi-velocities?

a (o}
Vv Vv
. _F, F,
We need: 3=, ==
VE.h VF,e

@ use the “virtual upper critical field”

P (see [Kasahara et al., 2007]) for the
27 o2 light hole band
_ hvr e Correct for the size of gaps
E=——
TA
a
VF,e o Hs AO,e
a H
Hllc i, VE.h \/ chHa ALY
Hila 1
¢ @ Correct for point nodes in the electron
FS (see [Miranovi¢ et al., 2001])
) H
Vlg,e — C2||a .1.66
o o5 5 1 1.5 VR Hi-lzuc

30/43



URu3Sip
©0000

Fitting data

Let's apply this to data

Parameters needed:
kg

kh
@ Shape of FS: k’,,;: .

,C

e
F,a

@ Anisotropy of v for each FS

@ Ratio of vr of the 2 bands ' =
09- .
o 0.8- —ﬁtofpa
Fitting parameters: 07 —fitof p,
e Gapvalues Ag (a-model) |
. <05 e 4@ _-0.99585
@ anisotropy of e-FS 04 )

AU,H=1 .3452, Ao‘s=3'4981

0.1- =
vFe/\/Fe =0.581, VFe/\/;h =0.98288, th/\/;h—1

0 0.2 0.4 O 6 08 1
T,
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And a different gap structure?

Try to find the nodel structure in a 2-band model with equal
volume of the FS’s
vspacelOcm
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Fitting data

And a different gap structure?

Try to find the nodel structure in a 2-band model with equal
volume of the FS’s
Both isotropic s-wave

Ay = An(T) 1
Ne = Ae(T) 0ol

0.8

o P,
o P
—fitofp,
07 —fitofp,

06
< 05
0.4
03

c pa -
kF kg =0.50052

Ao‘h_0'9431 4, Ao,e=2'7038

0.2

011
vF M =035, v2 e/\/; ,=1.0808, \/F h/vF =1

0 I
0 02 0.4 06 08 1

T/T
c
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And a different gap structure?

Try to find the nodel structure in a 2-band model with equal

volume of the FS’s

hole-FS: only line node, electron-FS: fully gapped

Ap = Ap(T)cos(0)
A.=A(T)

L) Pa
1) pC
0.8y fitof p_
—fitofp,
06t
I~
K e =3.802
04r,° 1%
A8, =15163, 4, =3.8098
02t
2 =]
VE MR =035,V W2 h_0 94725, vi W2 =1
% 02 04 06 08

TT
c
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Fitting data

And a different gap structure?

URu3Sip
0e®000

Try to find the nodel structure in a 2-band model with equal

volume of the FS’s

hole-FS: line node, electron-FS: point nodes

Ap = Ap(T)cos(0)
A = Ae(T)sin(0)

K Ak =39793
e Fe
A, ,=1:3786, A, _=4.6307

° P,

° pC
—fitofp,
—fitof p,

. v?slv;e=0.581, v;elvi ,=0.98535, v;yhlv;h=1
02 04 06
Tﬂ}

08 1
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Fitting data

And a different gap structure?

Try to find the nodel structure in a 2-band model with equal
volume of the FS’s

hole-FS: line node and point nodes, electron FS: point nodes

Ap = Ap(T)2cos(0)sin(0)

. 1 :
Ae = Ae(T)sin(6) o,
e pC
08 —fitofp, ||
—fitofp,
06
(%
K K2 =1.509
045 4, =1.3506, A =3.7482
02
VE M2 =0.581, V2 A2 =1.0462, vph/\/ﬁh—1
% 02 04 06 08 1
/T

c
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Fitting data

And a different gap structure?

Try to find the nodel structure in a 2-band model with equal
volume of the FS’s

Both line node and point nodes

Ap = Ap(T)2sin(0) cos(0)
A = Ag(T)2sin(6) cos() o9t

° P,

° pO

—fitofp,
—fitof p,

c pa
. kF‘ElkFle—2.9104
Ao‘h=1 .3943, Ao,e=5'4804

)
\ 4

0.1 Vi VR =0.2005, v2 N2 =1.4856, Vi 2 =1

0 02 04 06 08 1
T/Tc
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Fitting data

What about Fermi-liquid corrections?

Predicted behaviour: [Varma et al., 1986]

Lone® 1 (14 F7/3)Y(T)
mgy 1+ (F£/3)Y(T)

ATHT) =

@ mgy: dynamic mass, for example from cyclotron resonance
e F7 Landau coefficient
e Y(T) is the Yosida function, N(0)~1 3", dn/dEx
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What about Fermi-liquid corrections?

Limiting behaviour: [Varma et al., 1986]
m
A(T)=—Xges(T), T
(T) my scs(T) —0

_ m . _
AT = EA,ggs(T), T T,
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Fitting data

What about Fermi-liquid corrections?

Limiting behaviour: [Varma et al., 1986]
m
ANT)= —X\2(T), T
(T) my scs(T), —0
NE(T) = Zages(T), T =T

@ my: dynamic mass, for example from cyclotron resonance
@ m*: heavy mass, from transport measurements
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Fitting data

What about Fermi-liquid corrections?

Limiting behaviour: [Varma et al., 1986]

A2(T) = mﬂdAggs(T), 70

_ m . _
AT = g)\sgs(T), T T,

@ my: dynamic mass, for example from cyclotron resonance
@ m*: heavy mass, from transport measurements

We get A\;(0) = 0.66p4m and A.(0)
A= 1um from uSR and A,(0) > A.
H.1-measurements.

—~~

0.5pm, smaller than
0) in contrast to

—~~
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pone? [ (1+ F/3)Y(T)
my 1+ (F£/3)Y(T)
Generalize this to include bandstructure (quite a long formula)

AT =
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May Fermi-liquid corrections play a role?

pone? [ (1+ F/3)Y(T)
mqy 1+ (F£/3)Y(T)
Generalize this to include bandstructure (quite a long formula)

AT =

The F; fixed by mass ratios m*/my, all other parameters free

1

s P,
e P
0.8 -
—fit of P,
—fitofp,
0.6 1
S g
CLm F fixed by mcvc\otron and mtransport
c opd
0.4} K A =1.9107
A,,=1.9832, A =8.4793
0.2
VF e/vE ,=1.0027, VF e/’\/E ,=0.93039, VF hIVE =1
00 0.2 0.4 0.6 08 1

T
c
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May Fermi-liquid corrections play a role?

2 1+ F{/3)Y(T
\2(7y  Fone® [} (L FE/39)Y(T)
mqy 1+ (F£/3)Y(T)
Generalize this to include bandstructure (quite a long formula)
Fit F} starting from O

1

e P,
-] pC
08 —fitofp,| |
—fitof p,
06 .
F©=0.0979 (all)
®
< K M =1.4902
04l F° Fe
8y,=1.3368, A, =3.8794
0.2t
2 2
Ve M2 =0.581, v A2 =1.094, th/th
% 02 04 06 0.8 1

T
c
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May Fermi-liquid corrections play a role?

2y Hone® [} (Lt FE/3)Y(T)

mqy 1+ (F£/3)Y(T)
Generalize this to include bandstructure (quite a long formula)
Setall Ff =6
1
- pa
@ pC
08 —fitofp,||
—fitofp_
0.6
w | F=8a@n
a
ke &S =1.5101
0.4 Fe_Fe ~
Ao‘h_'l 9119, Ao‘e—5.51 97
0.2
VF e/VE e—O 581, VF e/Vih—'l 0884, VF h/v? h_1
OO 0.2 04 06 O.‘B 1
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Fitting data

Some conclusions

@ The temperature dependent penetration depth can be
measured accurately with TDO technique
@ Estimating the geometrical factor is very difficult

Calibration factor

T T T T
m #2 —o— Elbert E. M. Chia, Phd thesis, 2004
144 -A-- from simulations following Brandt
’ A B our data on Al disks
1,2 1
Qw [ SL#3
o 1,04 M i
\°\°\<
0,8 1
“a
s #1
0,6 4
T T T T
0,0 0,1 0,2 0,3 0,4 0,5

b/a (a=500um)

35/43



URu3Sip
[elelelel ]
Fitting data

Some conclusions

@ The temperature dependent penetration depth can be
measured accurately with TDO technique
@ Estimating the geometrical factor is very difficult

@ We can reliably extract the superfluid density p, and p. of

URu3Sip
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low-T power fit N

— low-T power fit
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Fitting data

Some conclusions

@ The temperature dependent penetration depth can be
measured accurately with TDO technique
@ Estimating the geometrical factor is very difficult

@ We can reliably extract the superfluid density p, and p. of
URu3Sip

@ The data can be reasonably well fitted by the two band model
with k; (ks + ik,) gap symmetry of Kasahara et al., 2007

1

.0,
Pe
—fitof p,

09
08

07 —fitof p,

06

205
S0 ke e 25261
04
\o‘n:1 3625, A =4.4633
03

02-

017 Ve W2 =0.581, v} A}, =12382, V] W2 =1
0 . . . .
0 02 04 06 08 1

T,
c
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@ A gap structure with less nodes does not fit the data well
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