

Anna Böhmer

Summer Seminar, Matsuda Lab. "Soutenance de stage d'option scientifique", Ecole Polytechnique

July 24, 2010

Contents

1 TDO

- 2 Geometric Factors and Calibration
 - Principle of Calibration
 - An intuitive approach
 - A computational approach
 - Final ("easy") solution
- 3 URu₂Si₂
 - Some properties
 - Experimental
 - Two-band superfluid density: the semiclassical model
 - Applying to our model of URu₂Si₂
 - Fitting data

Tunnel diode oscillator

First proposed by van Degrift, 1981 for high precision measurements of resonance frequency, sample inserted into the primary coil.

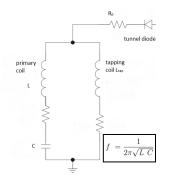


Figure: oscillating circuit, part of the low-T electronics

URu₂Si₂ Acknowledgements, Bibliography

Tunnel diode oscillator

First proposed by van Degrift, 1981 for high precision measurements of resonance frequency, sample inserted into the primary coil.

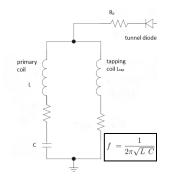


Figure: oscillating circuit, part of the low-T electronics

URu₂Si₂ Acknowledgements, Bibliography

Contents

1 TDO

2 Geometric Factors and Calibration

- Principle of Calibration
- An intuitive approach
- A computational approach
- Final ("easy") solution

3 URu₂Si₂

- Some properties
- Experimental
- Two-band superfluid density: the semiclassical model
- Applying to our model of URu₂Si₂
- Fitting data

Geometric Factors and Calibration

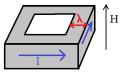
URu₂Si₂ Acknowledgements, Bibliography

Principle of Calibration

How can we relate the resonance frequency and λ ?

• start with magnetic energy of coil (SI)

$$U = \frac{1}{2}LI^{2} = \frac{1}{2}\int \vec{B} \cdot \vec{H}d^{3}r$$
$$\Delta U = \frac{1}{2}(L_{s} - L_{0})I^{2} = \frac{1}{2}\int \mu_{0}\vec{M} \cdot \vec{H_{0}}d^{3}r$$



Geometric Factors and Calibration

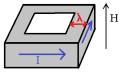
URu₂Si₂ Acknowledgements, Bibliography

Principle of Calibration

How can we relate the resonance frequency and λ ?

• start with magnetic energy of coil (SI)

$$U = \frac{1}{2}LI^{2} = \frac{1}{2}\int \vec{B} \cdot \vec{H}d^{3}r$$
$$\Delta U = \frac{1}{2}(L_{s} - L_{0})I^{2} = \frac{1}{2}\int \mu_{0}\vec{M} \cdot \vec{H_{0}}d^{3}r$$



- for the empty coil: $\frac{1}{2}LI^2 = \frac{B_0^2 V_c}{2\mu_0}$, eliminate *I*
- for a small cariation in total inductance due to sample: $\frac{f_s f_0}{f_0} = \frac{1}{2} \frac{L_s L_0}{L_0}$

Geometric Factors and Calibration

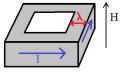
URu₂Si₂ Acknowledgements, Bibliography

Principle of Calibration

How can we relate the resonance frequency and λ ?

start with magnetic energy of coil (SI)

$$U = \frac{1}{2}LI^{2} = \frac{1}{2}\int \vec{B} \cdot \vec{H}d^{3}r$$
$$\Delta U = \frac{1}{2}(L_{s} - L_{0})I^{2} = \frac{1}{2}\int \mu_{0}\vec{M} \cdot \vec{H_{0}}d^{3}r$$



- for the empty coil: $\frac{1}{2}LI^2 = \frac{B_0^2V_c}{2\mu_0}$, eliminate *I*
- for a small cariation in total inductance due to sample: $\frac{f_s f_0}{f_0} = \frac{1}{2} \frac{L_s L_0}{L_0}$

Resulting frequency change with temperature

$$f(T) - f(T_{min}) = -\frac{f_0}{2V_c} \int_{V_s} \frac{M(\lambda(T), H_0) - M(\lambda(T_{min}), H_0)}{H_0} d^3r$$

Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

An intuitive approach

$M(\lambda)$ following Chia, 2004, Prozorov et al., 2000

take into account the the demagnetizing effect

$$M = rac{\chi}{1 + N\chi} H_{applied}$$

Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

An intuitive approach

$M(\lambda)$ following Chia, 2004, Prozorov et al., 2000

take into account the the demagnetizing effect

$$M = rac{\chi}{1 + N\chi} H_{applied}$$

Demagnetizing factor N, (see [Brandt, 2001a])

Strictly defined only for ellipsoids (homogeneous M)

$$H_{intern} = H_{applied} - NM(H_{intern}; N = 0)$$

 $M(H_{intern}; N = 0) = M(H_{applied}; N)$
 $M(H_{intern}; N = 0) = \chi H_{intern}$

An effective demagnetizing factor can also be defined (via average magnetization) for other shapes.

See Refs. [Osborn, 1945] for the general ellipsoid, [Chen et al., 1991] for cylinders, or [Pardo et al., 2004] for rectangular prisms.

Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

An intuitive approach

$M(\lambda)$ following Chia, 2004, Prozorov et al., 2000

take into account the the demagnetizing effect

$$M = rac{\chi}{1 + N\chi} H_{applied}$$

Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

An intuitive approach

$M(\lambda)$ following Chia, 2004, Prozorov et al., 2000

take into account the the demagnetizing effect

$$M = rac{\chi}{1 + N\chi} H_{applied}$$

② take into account the contribution of top and bottom surfaces

Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

An intuitive approach

$M(\lambda)$ following Chia, 2004, Prozorov et al., 2000

take into account the the demagnetizing effect

$$M = \frac{\chi}{1 + N\chi} H_{applied}$$

e take into account the contribution of top and bottom surfaces London equation for infinite slab:

$$\begin{split} \chi &= \mathcal{M}/\mathcal{H} = \\ \begin{bmatrix} 1 - \frac{\lambda}{w} \tanh\left(\frac{w}{\lambda}\right) \end{bmatrix} \\ \chi &\approx - \begin{bmatrix} 1 - \frac{\lambda}{w} \end{bmatrix} \end{split}$$

Geometric Factors and Calibration

An intuitive approach

$M(\lambda)$ following Chia, 2004, Prozorov et al., 2000

take into account the the demagnetizing effect

$$M = \frac{\chi}{1 + N\chi} H_{applied}$$

take into account the contribution of top and bottom surfaces
 London equation for infinite
 slab:

$$\begin{split} \chi &= M/H = \\ \left[1 - \frac{\lambda}{w} \tanh\left(\frac{w}{\lambda}\right)\right] \\ \chi &\approx - \left[1 - \frac{\lambda}{w}\right] \end{split}$$

For a finite sample an effective dimension can be introduced [Prozorov et al., 2000] $\chi \approx -\left[1 - \frac{\lambda}{R_{3D}}\right]$

URu2Si2 Acknowledgements, Bibliography

An intuitive approach

$M(\lambda)$ following Chia, 2004, Prozorov et al., 2000

take into account the the demagnetizing effect

$$M = rac{\chi}{1 + N\chi} H_{applied}$$

Itake into account the contribution of top and bottom surfaces London equation for infinite slab: $\chi = M/H =$

 $\left[1-\frac{\lambda}{w} \tanh\left(\frac{w}{\lambda}\right)\right]$ $\chi \approx -\left[1-\frac{\lambda}{w}\right]$

We linearize:

$$M = \frac{\chi}{1 - N} H$$

For a finite sample an effective dimension can be introduced [Prozorov et al., 2000]
$$\chi \approx -\left[1 - \frac{\lambda}{R_{3D}}\right]$$

Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

An intuitive approach

$M(\lambda)$ following Chia, 2004, Prozorov et al., 2000

take into account the the demagnetizing effect

$$M = \frac{\chi}{1 + N\chi} H_{applied}$$

take into account the contribution of top and bottom surfaces
 London equation for infinite
 slab:
 For a finite sample an
 effective dimension can be

$$\begin{split} \chi &= M/H = \\ \left[1 - \frac{\lambda}{w} \tanh\left(\frac{w}{\lambda}\right)\right] \\ \chi &\approx - \left[1 - \frac{\lambda}{w}\right] \end{split}$$

resulting magnetization

$$M = -\frac{H}{1-N} \left[1 - \frac{\lambda}{R_{3D}} \right]$$

For a finite sample an effective dimension can be introduced [Prozorov et al., 2000] $\chi \approx -\left[1 - \frac{\lambda}{R_{3D}}\right]$

Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

An intuitive approach

Conclusion for "Prozorov-G-factor"

Summary until now

$$f(T) - f(T_{min}) = -\frac{f_0}{2V_c} \int_{V_s} \frac{M(\lambda(T), B_0) - M(\lambda(T_{min}), B_0)}{H_0} d^3r$$
$$M = -\frac{H}{1 - N} \left[1 - \frac{\lambda}{R_{3D}} \right]$$

URu₂Si₂ Acknowledgements, Bibliography

An intuitive approach

Conclusion for "Prozorov-G-factor"

Summary until now

$$f(T) - f(T_{min}) = -\frac{f_0}{2V_c} \int_{V_s} \frac{M(\lambda(T), B_0) - M(\lambda(T_{min}), B_0)}{H_0} d^3r$$
$$M = -\frac{H}{1 - N} \left[1 - \frac{\lambda}{R_{3D}} \right]$$

By putting everything together

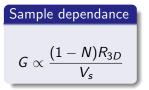
$$G = rac{2(1-N)R_{3D}}{f_0}rac{V_c}{V_s}$$
 so that $\Delta\lambda = G\Delta f$

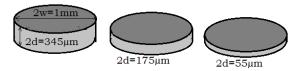
- demagnetizing factor 0 < N < 1
- effective dimension $0.2w < R_{3D} < 0.5w$
- filling factor V_s/V_c

Geometric Factors and Calibration

An intuitive approach

How to test this approach?

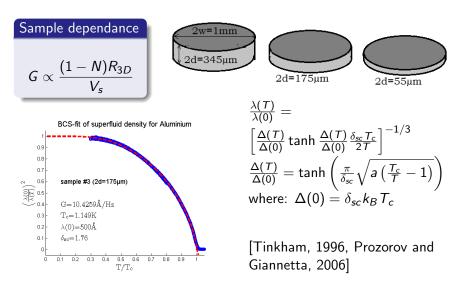




Geometric Factors and Calibration

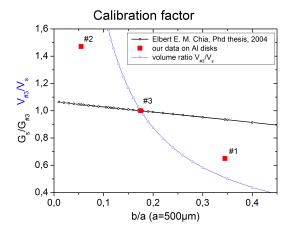
An intuitive approach

How to test this approach?



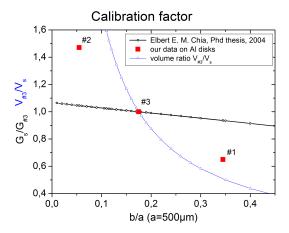
An intuitive approach

Testing this approach



An intuitive approach

Testing this approach



Something is wrong...

Demagnetizing effects exist but are greatly overestimated!

A computational approach

Contents

URu₂Si₂ Acknowledgements, Bibliography

1 TDO

2 Geometric Factors and Calibration

- Principle of Calibration
- An intuitive approach
- A computational approach
- Final ("easy") solution

3 URu₂Si₂

- Some properties
- Experimental
- Two-band superfluid density: the semiclassical model
- Applying to our model of URu₂Si₂
- Fitting data

URu₂Si₂ Acknowledgements, Bibliography

A computational approach

And if we computed $M(\lambda)$ directly?

Geometric Factors and Calibration

A computational approach

And if we computed $M(\lambda)$ directly?

Method developed by Brandt (see e.g. [Brandt and Miktik, 2000, Brandt, 2001b]) for 1-dimensional problems (cylinder,...)

the basic equations (London)

$$-\lambda^2 \mu_0 \vec{j} = \vec{A} = \vec{A_j} + \vec{A_a} \quad (1)$$
$$\mu_0 j = -\nabla^2 A_j \quad (2)$$

- A_a comes from the applied field H_a . $A_a = -\frac{r}{2}\mu_0 H_a$ for the disk case.
- A_j comes from the shielding currents. (Eq. 2)

Geometric Factors and Calibration

A computational approach

And if we computed $M(\lambda)$ directly?

Method developed by Brandt (see e.g. [Brandt and Miktik, 2000, Brandt, 2001b]) for 1-dimensional problems (cylinder,...)

the basic equations (London)

$$-\lambda^2 \mu_0 \vec{j} = \vec{A} = \vec{A}_j + \vec{A}_a \quad (1)$$
$$\mu_0 j = -\nabla^2 A_j \quad (2)$$

- A_a comes from the applied field H_a . $A_a = -\frac{r}{2}\mu_0 H_a$ for the disk case.
- *A_j* comes from the shielding currents. (Eq. 2)

Solve eq. 2 with the appropriate Green's function for the disk.

$$A_j(r) = -\mu_0 \int d^2 r' Q_{cyl}(\vec{r}') j(\vec{r}')$$

Geometric Factors and Calibration

A computational approach

And if we computed $M(\lambda)$ directly?

Method developed by Brandt (see e.g. [Brandt and Miktik, 2000, Brandt, 2001b]) for 1-dimensional problems (cylinder,...)

the basic equations (London)

$$-\lambda^2 \mu_0 \vec{j} = \vec{A} = \vec{A}_j + \vec{A}_a \quad (1)$$
$$\mu_0 j = -\nabla^2 A_j \quad (2)$$

- A_a comes from the applied field H_a . $A_a = -\frac{r}{2}\mu_0 H_a$ for the disk case.
- *A_j* comes from the shielding currents. (Eq. 2)

Solve eq. 2 with the appropriate Green's function for the disk.

$$A_j(r) = -\mu_0 \int d^2 r' Q_{cyl}(\vec{r}') j(\vec{r}')$$

Q Get equation for j

$$A_{a} = -\frac{r}{2}\mu_{0}H_{a} = \mu_{0}\int d^{2}r' \left[Q_{cyl}(\vec{r},\vec{r}') - \lambda^{2}\delta(\vec{r}-\vec{r}')\right]j(\vec{r}')$$

Geometric Factors and Calibration

A computational approach

And if we computed $M(\lambda)$ directly?

Method developed by Brandt (see e.g. [Brandt and Miktik, 2000, Brandt, 2001b]) for 1-dimensional problems (cylinder,...)

the basic equations (London)

$$-\lambda^2 \mu_0 \vec{j} = \vec{A} = \vec{A}_j + \vec{A}_a \quad (1)$$
$$\mu_0 j = -\nabla^2 A_j \quad (2)$$

- A_a comes from the applied field H_a . $A_a = -\frac{r}{2}\mu_0 H_a$ for the disk case.
- *A_j* comes from the shielding currents. (Eq. 2)

Solve eq. 2 with the appropriate Green's function for the disk.

$$A_j(r) = -\mu_0 \int d^2 r' Q_{cyl}(\vec{r}') j(\vec{r}')$$

Q Get equation for j

$$A_{a} = -\frac{r}{2}\mu_{0}H_{a} = \mu_{0}\int d^{2}r'\left[Q_{cyl}(\vec{r},\vec{r}') - \lambda^{2}\delta(\vec{r}-\vec{r}')\right]j(\vec{r}')$$

Solve this equation numerically on a grid.

A computational approach

Compute on a grid...

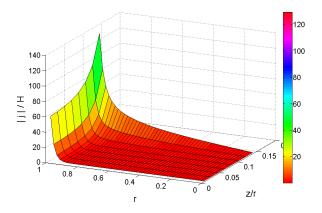
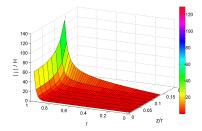


Figure: Example of a simulation for a disk with radius r = 1, half-height d = 0.15, $\lambda = 0.1$ on a small grid with 480 equally spaced gridpoints

URu₂Si₂ Acknowledgements, Bibliography

A computational approach

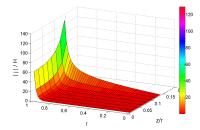
Compute on a grid...



 $\begin{array}{l} -\frac{r}{2}\mu_0H_a = \\ \mu_0\int d^2r' \left[Q_{cyl}(\vec{r},\vec{r}') - \lambda^2\delta(\vec{r}-\vec{r}') \right] j(\vec{r}') \end{array}$

A computational approach

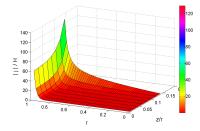
Compute on a grid...



$$\begin{aligned} &-\frac{r}{2}\mu_0 H_{\mathsf{a}} = \\ &\mu_0 \int d^2 r' \left[Q_{cyl}(\vec{r},\vec{r}') - \lambda^2 \delta(\vec{r}-\vec{r}') \right] j(\vec{r}') \end{aligned}$$

A computational approach

Compute on a grid...



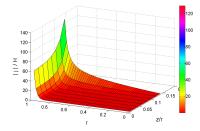
$$\begin{aligned} &-\frac{r}{2}\mu_0 H_{\mathsf{a}} = \\ &\mu_0 \int d^2 r' \left[Q_{cyl}(\vec{r},\vec{r}') - \lambda^2 \delta(\vec{r}-\vec{r}') \right] j(\vec{r}') \end{aligned}$$

•
$$-\frac{r_i}{2}H_a = \sum_j w_j \left(Q_{ij} - \lambda^2 \frac{\delta_{ij}}{w_i}\right) j_j$$

URu₂Si₂ Acknowledgements, Bibliography

A computational approach

Compute on a grid...



$$\begin{aligned} &-\frac{r}{2}\mu_0 H_{\mathsf{a}} = \\ &\mu_0 \int d^2 r' \left[Q_{cyl}(\vec{r},\vec{r}') - \lambda^2 \delta(\vec{r}-\vec{r}') \right] j(\vec{r}') \end{aligned}$$

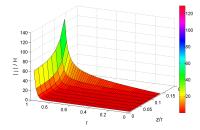
•
$$-\frac{r_i}{2}H_a = \sum_j w_j \left(Q_{ij} - \lambda^2 \frac{\delta_{ij}}{w_i}\right) j_j$$

•
$$r_i = 2\sum_j \tilde{Q}_{ij} j_j / H_a$$

URu₂Si₂ Acknowledgements, Bibliography

A computational approach

Compute on a grid...



$$\begin{aligned} &-\frac{r}{2}\mu_0 H_a = \\ &\mu_0 \int d^2 r' \left[Q_{cyl}(\vec{r},\vec{r}') - \lambda^2 \delta(\vec{r}-\vec{r}') \right] j(\vec{r}') \end{aligned}$$

•
$$-\frac{r_i}{2}H_a = \sum_j w_j \left(Q_{ij} - \lambda^2 \frac{\delta_{ij}}{w_i}\right) j_j$$

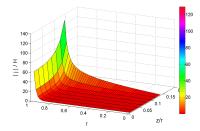
•
$$r_i = 2\sum_j \tilde{Q}_{ij} j_j / H_a$$

•
$$\frac{j_i}{H_a} = \frac{1}{2} \sum_j (\tilde{Q}^{-1})_{ij} r_j$$

URu₂Si₂ Acknowledgements, Bibliography

A computational approach

Compute on a grid...



$$\begin{aligned} &-\frac{r}{2}\mu_0 H_{\mathsf{a}} = \\ &\mu_0 \int d^2 r' \left[Q_{cyl}(\vec{r},\vec{r}') - \lambda^2 \delta(\vec{r}-\vec{r}') \right] j(\vec{r}') \end{aligned}$$

•
$$-\frac{r_i}{2}H_a = \sum_j w_j \left(Q_{ij} - \lambda^2 \frac{\delta_{ij}}{w_i}\right) j_j$$

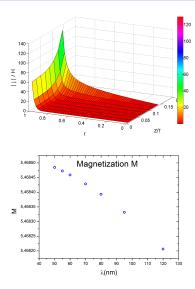
•
$$r_i = 2\sum_j \tilde{Q}_{ij} j_j / H_a$$

•
$$\frac{j_i}{H_a} = \frac{1}{2} \sum_j (\tilde{Q}^{-1})_{ij} r_j$$

•
$$\frac{M}{H} = \sum_{i} r_i^2 \frac{j_i}{H} w_i$$

A computational approach

Compute on a grid...



$$\begin{aligned} &-\frac{r}{2}\mu_0 H_a = \\ &\mu_0 \int d^2 r' \left[Q_{cyl}(\vec{r},\vec{r}') - \lambda^2 \delta(\vec{r}-\vec{r}') \right] j(\vec{r}') \end{aligned}$$

•
$$-\frac{r_i}{2}H_a = \sum_j w_j \left(Q_{ij} - \lambda^2 \frac{\delta_{ij}}{w_i}\right) j_j$$

• $r_i = 2\sum_j \tilde{Q}_{ij} j_j / H_a$
• $\frac{j_i}{H_a} = \frac{1}{2}\sum_j (\tilde{Q}^{-1})_{ij} r_j$
• $\frac{M}{H} = \sum_i r_i^2 \frac{j_i}{H} w_i$

URu2Si2 Acknowledgements, Bibliography

A computational approach

URu₂Si₂ Acknowledgements, Bibliography

A computational approach

Some problems and some solutions

• In realistic cases $\lambda \ll w$, so very fine grids are needed.

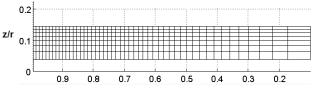
Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

A computational approach

Some problems and some solutions

In realistic cases λ ≪ w, so very fine grids are needed.
 Use a grid that gets finer at the borders (unequal weights)



r

A computational approach

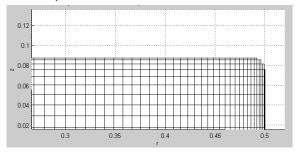
- Use a grid that gets finer at the borders (unequal weights)
- The divergence in the corner gets worse with finer grids.

Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

A computational approach

- Use a grid that gets finer at the borders (unequal weights)
- The divergence in the corner gets worse with finer grids. Remove corner points to model realistic corners



URu₂Si₂ Acknowledgements, Bibliography

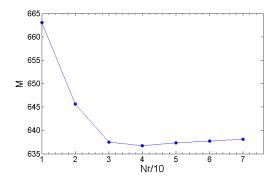
A computational approach

- Use a grid that gets finer at the borders (unequal weights)
- Remove corner points to model realistic corners
- *M* still depends on the number of grid points.

URu₂Si₂ Acknowledgements, Bibliography

A computational approach

- Use a grid that gets finer at the borders (unequal weights)
- Remove corner points to model realistic corners
- *M* still depends on the number of grid points. Use the same number of gridpoints for all computations, hope for obtaining relative G-factors.



URu₂Si₂ Acknowledgements, Bibliography

A computational approach

Some problems and some solutions

- Use a grid that gets finer at the borders (unequal weights)
- Remove corner points to model realistic corners
- Use the same number of gridpoints for all computations, hope for obtaining relative G-factors.

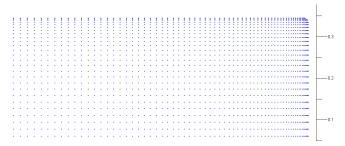
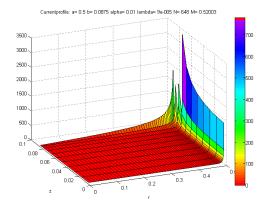


Figure: Example of the final grid with \sim 2000 gridpoints

URu₂Si₂ Acknowledgements, Bibliography

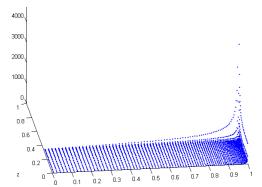
A computational approach

- Use a grid that gets finer at the borders (unequal weights)
- Remove corner points to model realistic corners
- Use the same number of gridpoints for all computations, hope for obtaining relative G-factors.



A computational approach

- Use a grid that gets finer at the borders (unequal weights)
- Remove corner points to model realistic corners
- Use the same number of gridpoints for all computations, hope for obtaining relative G-factors.



A computational approach

Results of computational approach for Al-disks

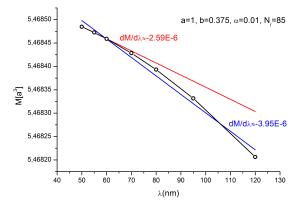
$$f(T) - f(T_{min}) = -\frac{f_0}{2V_c} \left(\int_{V_s} M(\lambda(T), H_0) / H_0 d^3 r - \int_{V_s} M(\lambda(T_{min}), H_0) \right)$$
$$f(T) - f(T_{min}) \approx \frac{f_0}{2V_c} V_s \frac{dM}{d\lambda} (\lambda(T_{min}) - \lambda(T)) / H_0$$

Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

A computational approach

Results of computational approach for Al-disks

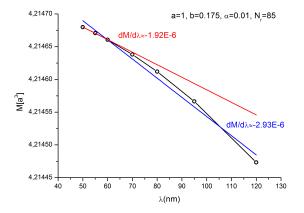


Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

A computational approach

Results of computational approach for Al-disks

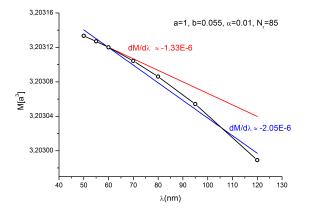


Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

A computational approach

Results of computational approach for Al-disks



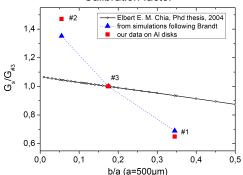
Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

A computational approach

Results of computational approach for Al-disks

Check obtained relative G-factors



Calibration factor

- Reasonable agreement!
- However, absolute values cannot be reproduced.

Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

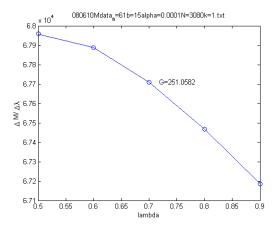
A computational approach

Trying on the URu₂Si₂-samples

A computational approach

Trying on the URu₂Si₂-samples

#E2_A: G = 250 Å/Hz found, $G \approx 200 \text{ Å/Hz}$ probably correct! #E2: G = 52 (or 79) Å/Hz found, $G \approx 80 \text{ Å/Hz}$ probably correct!



Geometric Factors and Calibration

A computational approach

Trying on the URu₂Si₂-samples

#E2_A: G = 250 Å/Hz found, $G \approx 200$ Å/Hz probably correct! #E2: G = 52 (or 79) Å/Hz found, $G \approx 80$ Å/Hz probably correct!

But there is a problem

Predicted G-factor depends on λ/w .

A computational approach

Trying on the URu₂Si₂-samples

#E2_A: G = 250 Å/Hz found, $G \approx 200$ Å/Hz probably correct! #E2: G = 52 (or 79) Å/Hz found, $G \approx 80$ Å/Hz probably correct!

But there is a problem

Predicted G-factor depends on λ/w .

An Al-sample and an U-sample of same shape have different geometric factors.

A computational approach

Trying on the URu₂Si₂-samples

#E2_A: G = 250 Å/Hz found, $G \approx 200$ Å/Hz probably correct! #E2: G = 52 (or 79) Å/Hz found, $G \approx 80$ Å/Hz probably correct!

But there is a problem

Predicted G-factor depends on λ/w .

An Al-sample and an U-sample of same shape have different geometric factors.

URu₂Si₂ Acknowledgements, Bibliography

A computational approach

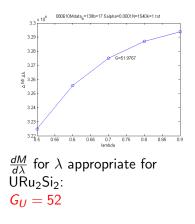
Trying on the URu₂Si₂-samples

#E2_A: G = 250 Å/Hz found, $G \approx 200$ Å/Hz probably correct! #E2: G = 52 (or 79) Å/Hz found, $G \approx 80$ Å/Hz probably correct!

But there is a problem

Predicted G-factor depends on λ/w .

An Al-sample and an U-sample of same shape have different geometric factors.



URu₂Si₂ Acknowledgements, Bibliography

A computational approach

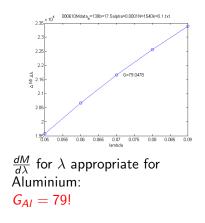
Trying on the URu₂Si₂-samples

#E2_A: G = 250 Å/Hz found, $G \approx 200$ Å/Hz probably correct! #E2: G = 52 (or 79) Å/Hz found, $G \approx 80$ Å/Hz probably correct!

But there is a problem

Predicted G-factor depends on λ/w .

An Al-sample and an U-sample of same shape have different geometric factors.



Final ("easy") solution

Adapted final solution

URu₂Si₂ Acknowledgements, Bibliography

Final ("easy") solution

Adapted final solution

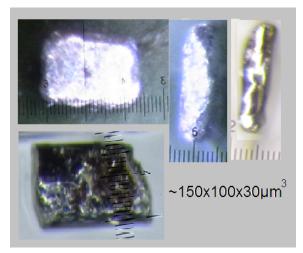
Cut an Al-sample of the same size/shape as our best ${\sf URu}_2{\sf Si}_2{\text{-}}{\sf sample}~(\#{\sf E2}_{-}{\sf B})$

URu2Si2 Acknowledgements, Bibliography

Final ("easy") solution

Adapted final solution

Cut an Al-sample of the same size/shape as our best $URu_2Si_2\mbox{-sample}\ (\#E2_B)$



Final ("easy") solution

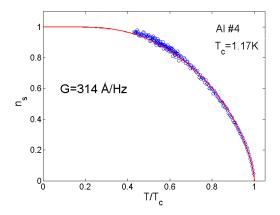
Adapted final solution

Cut an Al-sample of the same size/shape as our best $URu_2Si_2\mbox{-sample}\ (\#E2_B)\ \mbox{and}\ measure \ it:$

Final ("easy") solution

Adapted final solution

Cut an Al-sample of the same size/shape as our best $URu_2Si_2\mbox{-sample}\ (\#E2_B)\ \mbox{and}\ measure \ it:$



URu2Si2 Acknowledgements, Bibliography

Contents

1 TDO

- 2 Geometric Factors and Calibration
 - Principle of Calibration
 - An intuitive approach
 - A computational approach
 - Final ("easy") solution
- 3 URu₂Si₂
 - Some properties
 - Experimental
 - Two-band superfluid density: the semiclassical model
 - Applying to our model of URu₂Si₂
 - Fitting data

TDO	Geometric Factors and Calibration	URu₂Si₂ ●000000000000000000000000000000000000	Acknowledgements, Bibliography
Some properties			
URu_2Si_2			

- Hidden order transistion at $T_h = 17.5 \text{K}$
- Superconducting below 1.4K

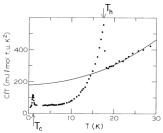


Figure: taken from Ref. [Palstra et al., 1985]

TDO	Geometric Factors and Calibration	URu₂Si₂ ●000000000000000000000000000000000000	Acknowledgements, Bibliography
Some properties			
URu_2Si_2			

- Hidden order transistion at $T_h = 17.5 \text{K}$
- Superconducting below 1.4K

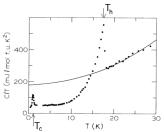


Figure: taken from Ref. [Palstra et al., 1985]

Hidden order: We don't know the Brillouin-zone, FS not clear

Ŧ		0
	D	U

URu2Si2 Acknowledgements, Bibliography

Some properties

URu_2Si_2

- Hidden order transistion at $T_h = 17.5 \text{K}$
- Superconducting below 1.4K

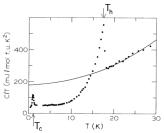
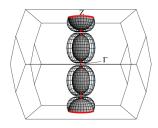


Figure: taken from Ref. [Palstra et al., 1985]

Hidden order: We don't know the Brillouin-zone, FS not clear

- Thermal conductivity measurements by Kasahara et al.
- Specific heat measurements by Yano et al.
- $\Delta_k \propto k_z (k_x + i k_y)$ (chiral d-wave)



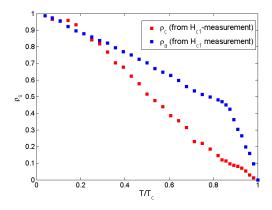
Geometric Factors and Calibration

URu2Si2 Acknowledgements, Bibliography

Some properties

H_{c1} and mysterious kink

See [Okazaki et al., 2009] Superfluid density extracted from H_{c1}

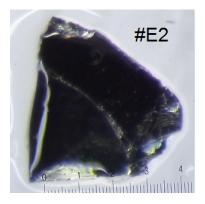


URu2Si2 Acknowledgements, Bibliography

Experimental

Our samples

- ultraclean ($RRR \sim 700$)
- Cut one larger cristal into two.



T		0
	D	U

URu₂Si₂ Acknowledgements, Bibliography

Experimental

How to get $\Delta \lambda_{ab}$ and $\Delta \lambda_c$

Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

Experimental

How to get $\Delta \lambda_{ab}$ and $\Delta \lambda_c$

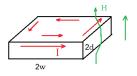
Measure frequency shift in 2 different geometries:

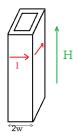
URu₂Si₂ Acknowledgements, Bibliography

Experimental

How to get $\Delta \lambda_{ab}$ and $\Delta \lambda_c$

Measure frequency shift in 2 different geometries:





Geometric Factors and Calibration

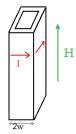
URu₂Si₂ Acknowledgements, Bibliography

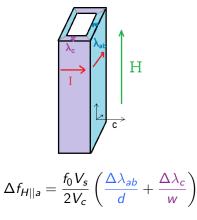
Experimental

How to get $\Delta \lambda_{ab}$ and $\Delta \lambda_c$

Measure frequency shift in 2 different geometries:

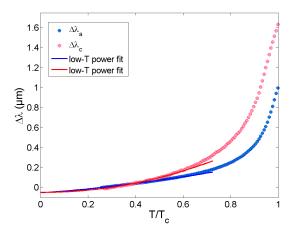
$$\Delta \lambda_{ab} = G \Delta f_{H||c}$$





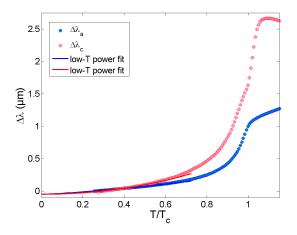
TDO	Geometric Factors and Calibration	URu₂Si₂ ○○○○●○○○○○○○○	Acknowledgements, Bibliography 0000
Experimental			
Result			

We can find the change in penetration depth:



TDO	Geometric Factors and Calibration	URu ₂ Si ₂ 00 00 00000000000000000000000000000000	Acknowledgements, Bibliography 0000
Experimental			
Result			

We can find the change in penetration depth: But strangely we get different critical temperatures.



URu2Si2 Acknowledgements, Bibliography

Two-band superfluid density: the semiclassical model

Contents

1 TDO

2 Geometric Factors and Calibration

- Principle of Calibration
- An intuitive approach
- A computational approach
- Final ("easy") solution

3 URu₂Si₂

- Some properties
- Experimental

• Two-band superfluid density: the semiclassical model

- Applying to our model of URu₂Si₂
- Fitting data

Two-band superfluid density: the semiclassical model

Relating electronic properties to the band structure

Two-band superfluid density: the semiclassical model

Relating electronic properties to the band structure

$$\vec{v}_{k} = \hbar^{-1} \nabla_{k} \epsilon_{k}$$
$$\delta \vec{k}_{E} = e \vec{E} \tau_{k} / \hbar$$
$$\delta \epsilon_{k} = \frac{\partial \epsilon_{k}}{\partial \vec{k}} \cdot \delta \vec{k}_{E}$$
$$\delta \epsilon_{k} = \vec{v}_{k} e \tau_{k} \vec{E}$$

Two-band superfluid density: the semiclassical model

Relating electronic properties to the band structure

$$\vec{v}_{k} = \hbar^{-1} \nabla_{k} \epsilon_{k}$$

$$\delta \vec{k}_{E} = e \vec{E} \tau_{k} / \hbar$$

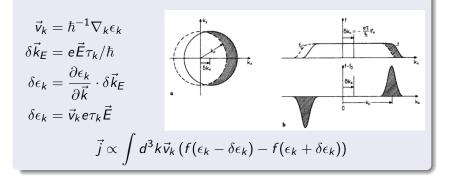
$$\delta \epsilon_{k} = \frac{\partial \epsilon_{k}}{\partial \vec{k}} \cdot \delta \vec{k}_{E}$$

$$\delta \epsilon_{k} = \vec{v}_{k} e \tau_{k} \vec{E}$$

URu2Si2 Acknowledgements, Bibliography

Two-band superfluid density: the semiclassical model

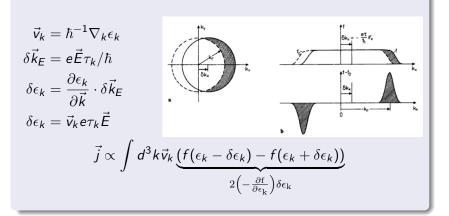
Relating electronic properties to the band structure



Two-band superfluid density: the semiclassical model

Relating electronic properties to the band structure

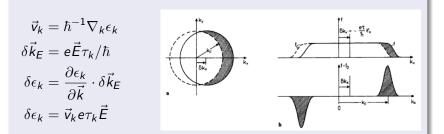
Example for conductivity



Two-band superfluid density: the semiclassical model

Relating electronic properties to the band structure

Example for conductivity



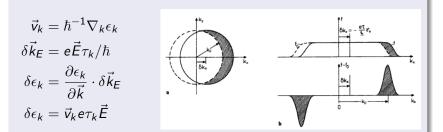
$$\vec{j} \propto \int d^3k \left(-\frac{\partial f}{\partial \epsilon_k} \right) \tau_k(\vec{v}_k \vec{v}_k) \cdot \vec{E} \Rightarrow \sigma_{im} \propto \oint dS_F \frac{v_{Fi} v_{Fm}}{v_F} \tau_F$$

URu₂Si₂ Acknowledgements, Bibliography

Two-band superfluid density: the semiclassical model

Relating electronic properties to the band structure

Example for conductivity



$$\vec{j} \propto \int d^3k \left(-\frac{\partial f}{\partial \epsilon_k} \right) \tau_k(\vec{v}_k \vec{v}_k) \cdot \vec{E} \Rightarrow \sigma_{im} \propto \oint dS_F \frac{v_{Fi} v_{Fm}}{v_F} \tau_F$$

For (quasi)free electrons and isotropic τ we find Drude: $\sigma = \frac{ne^2\tau}{m^*}$

URu2Si2 Acknowledgements, Bibliography

Two-band superfluid density: the semiclassical model

Let's do the same for the supercurrent

[Chandrasekhar and Einzel, 1993]

URu2Si2 Acknowledgements, Bibliography

Two-band superfluid density: the semiclassical model

Let's do the same for the supercurrent

[Chandrasekhar and Einzel, 1993]

Normal conductivity

$$\begin{split} \hbar \delta \vec{k}_E &= e \vec{E} \tau_k \\ \delta \epsilon_k &= \frac{\partial \epsilon_k}{\partial \vec{k}} \cdot \delta \vec{k}_E \\ \delta \epsilon_k &= \vec{v}_k e \tau_k \vec{E} \end{split}$$

URu2Si2 Acknowledgements, Bibliography

Two-band superfluid density: the semiclassical model

Let's do the same for the supercurrent

[Chandrasekhar and Einzel, 1993]

Normal conductivity

Supercurrent

$$\begin{split} \hbar \delta \vec{k}_E &= e \vec{E} \tau_k \\ \delta \epsilon_k &= \frac{\partial \epsilon_k}{\partial \vec{k}} \cdot \delta \vec{k}_E \\ \delta \epsilon_k &= \vec{v}_k e \tau_k \vec{E} \end{split}$$

$$\begin{split} \hbar \delta k_{A} &= -e\vec{A} \\ \delta \epsilon_{k} &= \frac{\partial \epsilon_{k}}{\partial \vec{k}} \cdot \delta \vec{k}_{A} \\ \delta \epsilon_{k} &= -e\vec{v}_{k}\vec{A} \end{split}$$

London equations:

$$m\vec{v}_{s} = -e\vec{A}$$
$$\mu_{0}\vec{j} = \lambda^{-2}\vec{A}$$
$$\lambda^{-2} = \frac{\mu_{0}ne^{2}}{m^{*}}$$

URu2Si2 Acknowledgements, Bibliography

Two-band superfluid density: the semiclassical model

Let's do the same for the supercurrent

[Chandrasekhar and Einzel, 1993]

Normal conductivity	Supercurrent	London equations:
$\begin{split} \hbar \delta \vec{k}_{E} &= e \vec{E} \tau_{k} \\ \delta \epsilon_{k} &= \frac{\partial \epsilon_{k}}{\partial \vec{k}} \cdot \delta \vec{k}_{E} \\ \delta \epsilon_{k} &= \vec{v}_{k} e \tau_{k} \vec{E} \end{split}$	$\hbar \delta k_{\mathcal{A}} = -e \vec{\mathcal{A}}$ $\delta \epsilon_k = rac{\partial \epsilon_k}{\partial \vec{k}} \cdot \delta \vec{k}_{\mathcal{A}}$ $\delta \epsilon_k = -e \vec{v}_k \vec{\mathcal{A}}$	$egin{aligned} mec v_s &= -eec A \ \mu_0 ec j &= \lambda^{-2}ec A \ \lambda^{-2} &= rac{\mu_0 n e^2}{m^*} \end{aligned}$

• Normal state current: $\vec{j} \propto \int d^3k \left(-\frac{\partial f}{\partial \epsilon_k}\right) \tau_k(\vec{v}_k \vec{v}_k) \cdot \vec{E}$

URu₂Si₂ Acknowledgements, Bibliography

Two-band superfluid density: the semiclassical model

Let's do the same for the supercurrent

[Chandrasekhar and Einzel, 1993]

Normal conductivity	Supercurrent	London equations:
$\begin{split} \hbar \delta \vec{k}_E &= e \vec{E} \tau_k \\ \delta \epsilon_k &= \frac{\partial \epsilon_k}{\partial \vec{k}} \cdot \delta \vec{k}_E \\ \delta \epsilon_k &= \vec{v}_k e \tau_k \vec{E} \end{split}$	$\begin{split} \hbar \delta k_{\mathcal{A}} &= -e\vec{\mathcal{A}} \\ \delta \epsilon_{k} &= \frac{\partial \epsilon_{k}}{\partial \vec{k}} \cdot \delta \vec{k}_{\mathcal{A}} \\ \delta \epsilon_{k} &= -e\vec{v}_{k}\vec{\mathcal{A}} \end{split}$	$egin{aligned} mec v_s &= -eec A \ \mu_0ec j &= \lambda^{-2}ec A \ \lambda^{-2} &= rac{\mu_0 n e^2}{m^*} \end{aligned}$

• Normal state current: $\vec{j} \propto \int d^3k \left(-\frac{\partial f}{\partial \epsilon_k} \right) \tau_k(\vec{v}_k \vec{v}_k) \cdot \vec{E}$

• Supercurrent: $\vec{j}_s \propto -\int d^3k \left[-\left(\frac{\partial n_k}{\partial \epsilon_k} - \frac{\partial f(E_k)}{\partial E_k}\right) \right] (\vec{v}_k \vec{v}_k) \cdot \vec{A}$ n_k is the single particle occupation of the state k $f(E_k)$ is its occupation by quasiparticles. $E_k = \sqrt{\epsilon_k^2 + \Delta_k^2}$ Only superconducting electrons contribute to j_s .

URu₂Si₂ Acknowledgements, Bibliography

Two-band superfluid density: the semiclassical model

How do we get the superfluid-density now?

URu₂Si₂ Acknowledgements, Bibliography

Two-band superfluid density: the semiclassical model

How do we get the superfluid-density now?

$$\vec{j}_{s} \propto -\int d^{3}k \left[-\left(\frac{\partial n_{k}}{\partial \epsilon_{k}} - \frac{\partial f(E_{k})}{\partial E_{k}} \right) \right] (\vec{v}_{k}\vec{v}_{k}) \cdot \vec{A}$$

We use:

$$d^{3}k = rac{dS_{F}d\epsilon_{k}}{\hbar v_{F}}$$

 $d\epsilon_{k} = 2rac{d\epsilon_{k}}{dE_{k}}dE_{k}$

URu₂Si₂ Acknowledgements, Bibliography

Two-band superfluid density: the semiclassical model

How do we get the superfluid-density now?

$$\vec{j}_s \propto -\int d^3k \left[-\left(rac{\partial n_k}{\partial \epsilon_k} - rac{\partial f(E_k)}{\partial E_k}
ight)
ight] (\vec{v}_k \vec{v}_k) \cdot \vec{A}$$

We use:

$$d^{3}k = \frac{dS_{F}d\epsilon_{k}}{\hbar v_{F}}$$

 $d\epsilon_{k} = 2\frac{d\epsilon_{k}}{dE_{k}}dE_{k}$

• First (diamagnetic) term: $\oint dS_F \frac{\vec{v}_F \vec{v}_F}{v_F}$

URu₂Si₂ Acknowledgements, Bibliography

Two-band superfluid density: the semiclassical model

How do we get the superfluid-density now?

$$\vec{j}_s \propto -\int d^3k \left[-\left(rac{\partial n_k}{\partial \epsilon_k} - rac{\partial f(E_k)}{\partial E_k}
ight)
ight] (\vec{v}_k \vec{v}_k) \cdot \vec{A}$$

We use:

$$d^{3}k = \frac{dS_{F}d\epsilon_{k}}{\hbar v_{F}}$$

 $d\epsilon_{k} = 2\frac{d\epsilon_{k}}{dE_{k}}dE_{k}$

• First (diamagnetic) term: $\oint dS_F \frac{\vec{v}_F \vec{v}_F}{v_F}$

• Second (paramagnetic) term: $\oint dS_F \frac{\vec{v}_F \vec{v}_F}{v_F} 2 \int \frac{d\epsilon_k}{dE_k} dE_k \frac{\partial f(E_k)}{\partial E_k}$

URu₂Si₂ Acknowledgements, Bibliography

× * /

Two-band superfluid density: the semiclassical model

How do we get the superfluid-density now?

$$\vec{j}_s \propto -\int d^3k \left[-\left(\frac{\partial n_k}{\partial \epsilon_k} - \frac{\partial f(E_k)}{\partial E_k} \right) \right] (\vec{v}_k \vec{v}_k) \cdot \vec{A}$$

Ve use:

$$d^{3}k = \frac{dS_{F}d\epsilon_{k}}{\hbar v_{F}}$$

 $d\epsilon_{k} = 2\frac{d\epsilon_{k}}{dE_{\nu}}dE$

• First (diamagnetic) term: $\oint dS_F \frac{\vec{v}_F \vec{v}_F}{v_F}$

• Second (paramagnetic) term: $\oint dS_F \frac{\vec{v}_F \vec{v}_F}{v_F} 2 \int \frac{d\epsilon_k}{dE_k} dE_k \frac{\partial f(E_k)}{\partial E_k}$

Final result
$$\mu_0ec{j}=-\lambda^{-2}ec{\mathcal{A}}$$
 [Prozorov and Giannetta, 2006]

$$\lambda_{ij}^{-2}(T) = \frac{\mu_0 e^2}{4\pi^3 \hbar} \oint_{FS} dS_k \left[\frac{v_F^i v_F^j}{|v_F|} \left(1 + 2 \int_{\Delta(k)}^{\infty} dE_k \frac{\partial f(E_k)}{\partial E_k} \frac{N(E_k)}{N(0)} \right) \right]$$

(Only!) for quasi-free electrons and "simple" geometry we find

$$\lambda(0)^{-2} = \frac{\mu_0 n e^2}{m^*}$$

URu₂Si₂ Acknowledgements, Bibliography

Two-band superfluid density: the semiclassical model

How do we get the superfluid-density now?

$$\vec{j}_s \propto -\int d^3k \left[-\left(rac{\partial n_k}{\partial \epsilon_k} - rac{\partial f(E_k)}{\partial E_k}
ight)
ight] (\vec{v}_k \vec{v}_k) \cdot \vec{A}$$

We use:

$$d^{3}k = \frac{dS_{F}d\epsilon_{k}}{\hbar v_{F}}$$

 $d\epsilon_{k} = 2\frac{d\epsilon_{k}}{dE_{k}}dE_{k}$

- First (diamagnetic) term: $\oint dS_F \frac{\vec{v}_F \vec{v}_F}{v_F}$
- Second (paramagnetic) term: $\oint dS_F \frac{\vec{v}_F \vec{v}_F}{v_F} 2 \int \frac{d\epsilon_k}{dE_k} dE_k \frac{\partial f(E_k)}{\partial E_k}$

Final result $\mu_0 \vec{j} = -\lambda^{-2} \vec{A}$ [Prozorov and Giannetta, 2006]

$$\lambda_{ij}^{-2}(T) = \frac{\mu_0 e^2}{4\pi^3 \hbar} \oint_{FS} dS_k \left[\frac{v_F^i v_F^j}{|v_F|} \left(1 + 2 \int_{\Delta(k)}^{\infty} dE_k \frac{\partial f(E_k)}{\partial E_k} \frac{N(E_k)}{N(0)} \right) \right]$$

We can now compute the superfluid density

$$\rho_{ii} = \left(\frac{\lambda_{ii}(0)}{\lambda_{ii}(T)}\right)^{-2}$$

Geometric Factors and Calibration

URu2Si2 Acknowledgements, Bibliography

Applying to our model of URu₂Si₂

$$\lambda_{ij}^{-2}(T) = \frac{\mu_0 e^2}{4\pi^3 \hbar} \oint_{FS} dS_k \left[\frac{v_F^i v_F^j}{|v_F|} \left(1 + 2 \int_{\Delta(k)}^{\infty} dE_k \frac{\partial f(E_k)}{\partial E_k} \frac{N(E_k)}{N(0)} \right) \right]$$

Geometric Factors and Calibration

URu2Si2 Acknowledgements, Bibliography

Applying to our model of URu₂Si₂

What does it look like in our case?

$$\lambda_{ij}^{-2}(T) = \frac{\mu_0 e^2}{4\pi^3 \hbar} \oint_{FS} dS_k \left[\frac{v_F^i v_F^j}{|v_F|} \left(1 + 2 \int_{\Delta(k)}^{\infty} dE_k \frac{\partial f(E_k)}{\partial E_k} \frac{N(E_k)}{N(0)} \right) \right]$$

$$\begin{split} \rho_{aa}(T) = & \frac{\oint_{FS,h} dS_h \frac{\left(v_{F,x}^h\right)^2}{|v_F^h|} \left(1 - \frac{1}{2T} \int_0^\infty d\epsilon \cosh^{-2} \left(\frac{\sqrt{\epsilon^2 + |\Delta_h(\vec{k})|^2}}{2T}\right)\right)}{\oint_{FS,h} dS_h \frac{\left(v_{F,x}^h\right)^2}{|v_F^h|} + \oint_{FS,e} dS_e \frac{\left(v_{F,x}^e\right)^2}{|v_F^e|}} \\ &+ \frac{\oint_{FS,e} dS_e \frac{\left(v_{F,x}^e\right)^2}{|v_F^e|} \left(1 - \frac{1}{2T} \int_0^\infty d\epsilon \cosh^{-2} \left(\frac{\sqrt{\epsilon^2 + |\Delta_e(\vec{k})|^2}}{2T}\right)\right)}{\oint_{FS,h} dS_h \frac{\left(v_{F,x}^h\right)^2}{|v_F^h|} + \oint_{FS,e} dS_e \frac{\left(v_{F,x}^e\right)^2}{|v_F^e|}} \end{split}$$

a little scary.

Geometric Factors and Calibration

URu₂Si₂ Acknowledgements, Bibliography

Applying to our model of URu₂Si₂

$$\rho_{aa}(T) = \frac{\oint_{FS,h} dS_h \frac{\left(v_{F,x}^h\right)^2}{|v_F^h|} \left(1 - \frac{1}{2T} \int_0^\infty d\epsilon \cosh^{-2} \left(\frac{\sqrt{\epsilon^2 + |\Delta_h(\vec{k})|^2}}{2T}\right)\right)}{\oint_{FS,h} dS_h \frac{\left(v_{F,x}^h\right)^2}{|v_F^h|} + 2 \oint_{FS,e} dS_e \frac{\left(v_{F,x}^e\right)^2}{|v_F^e|}} + \frac{2 \oint_{FS,e} dS_e \frac{\left(v_{F,x}^e\right)^2}{|v_F^e|} \left(1 - \frac{1}{2T} \int_0^\infty d\epsilon \cosh^{-2} \left(\frac{\sqrt{\epsilon^2 + |\Delta_e(\vec{k})|^2}}{2T}\right)\right)}{\oint_{FS,h} dS_h \frac{\left(v_{F,x}^h\right)^2}{|v_F^h|} + 2 \oint_{FS,e} dS_e \frac{\left(v_{F,x}^e\right)^2}{|v_F^e|}}$$

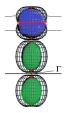


Geometric Factors and Calibration

URu2Si2 Acknowledgements, Bibliography

Applying to our model of URu₂Si₂

$$\rho_{aa}(T) = \frac{\oint_{FS,h} dS_h \frac{\left(v_{F,x}^h\right)^2}{|v_F^h|} \left(1 - \frac{1}{2T} \int_0^\infty d\epsilon \cosh^{-2} \left(\frac{\sqrt{\epsilon^2 + |\Delta_h(\vec{k})|^2}}{2T}\right)\right)}{\oint_{FS,h} dS_h \frac{\left(v_{F,x}^h\right)^2}{|v_F^h|} + 2 \oint_{FS,e} dS_e \frac{\left(v_{F,x}^e\right)^2}{|v_F^e|}} + \frac{2 \oint_{FS,e} dS_e \frac{\left(v_{F,x}^e\right)^2}{|v_F^e|} \left(1 - \frac{1}{2T} \int_0^\infty d\epsilon \cosh^{-2} \left(\frac{\sqrt{\epsilon^2 + |\Delta_e(\vec{k})|^2}}{2T}\right)\right)}{\oint_{FS,h} dS_h \frac{\left(v_{F,x}^h\right)^2}{|v_F^h|} + 2 \oint_{FS,e} dS_e \frac{\left(v_{F,x}^e\right)^2}{|v_F^e|}}$$



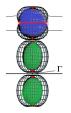
- Contributions from electron- and hole-FS cannot be separated in general.
- k-dependance from gapstructure (T dependent) and from bandstructure (T-independent)!

Geometric Factors and Calibration

URu2Si2 Acknowledgements, Bibliography

Applying to our model of URu₂Si₂

$$\begin{split} \rho_{aa}(T) = & \frac{\oint_{FS,h} dS_h \frac{\left(v_{F,x}^h\right)^2}{|v_F^h|} \left(1 - \frac{1}{2T} \int_0^\infty d\epsilon \cosh^{-2} \left(\frac{\sqrt{\epsilon^2 + |\Delta_h(\vec{k})|^2}}{2T}\right)\right)}{\oint_{FS,h} dS_h \frac{\left(v_{F,x}^h\right)^2}{|v_F^h|} + 2 \oint_{FS,e} dS_e \frac{\left(v_{F,x}^e\right)^2}{|v_F^e|}} \\ &+ \frac{2 \oint_{FS,e} dS_e \frac{\left(v_{F,x}^e\right)^2}{|v_F^e|} \left(1 - \frac{1}{2T} \int_0^\infty d\epsilon \cosh^{-2} \left(\frac{\sqrt{\epsilon^2 + |\Delta_e(\vec{k})|^2}}{2T}\right)\right)}{\oint_{FS,h} dS_h \frac{\left(v_{F,x}^h\right)^2}{|v_F^h|} + 2 \oint_{FS,e} dS_e \frac{\left(v_{F,x}^e\right)^2}{|v_F^e|}} \end{split}$$



- Contributions from electron- and hole-FS cannot be separated in general.
- k-dependance from gapstructure (T dependent) and from bandstructure (T-independent)!

Geometric Factors and Calibration

URu2Si2 Acknowledgements, Bibliography

Applying to our model of URu₂Si₂

Geometric Factors and Calibration

URu2Si2 Acknowledgements, Bibliography

Applying to our model of $\mathsf{URu}_2\mathsf{Si}_2$

Using
$$H_{c2}$$

$$H_{c2} = \frac{\Phi_0}{2\pi\xi^2}$$
$$\xi = \frac{\hbar v_F}{\pi\Delta}$$

We need:
$$\frac{v_{F,e}^a}{v_{F,h}^a}$$
, $\frac{v_{F,e}^c}{v_{F,e}^a}$

Geometric Factors and Calibration

URu2Si2 Acknowledgements, Bibliography

Applying to our model of $\mathsf{URu}_2\mathsf{Si}_2$

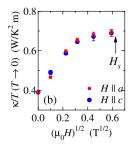
Using
$$H_{c2}$$

$$H_{c2} = \frac{\Phi_0}{2\pi\xi^2}$$
$$\xi = \frac{\hbar v_F}{\pi\Delta}$$

We need:
$$\frac{v_{F,e}^a}{v_{F,h}^a}$$
, $\frac{v_{F,e}^c}{v_{F,e}^a}$

- use the "virtual upper critical field" (see [Kasahara et al., 2007]) for the light hole band
- Correct for the size of gaps

$$\frac{v_{F,e}^{a}}{v_{F,h}^{a}} = \sqrt{\frac{H_{s}}{H_{c2}^{H||a}}} \frac{\Delta_{0,e}}{\Delta_{0,h}}$$



Geometric Factors and Calibration

URu2Si2 Acknowledgements, Bibliography

Applying to our model of $\mathsf{URu}_2\mathsf{Si}_2$

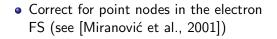
Using
$$H_{c2}$$

 $H_{c2} = \frac{\Phi_0}{2\pi\xi^2}$
 $\xi = \frac{\hbar v_F}{\pi\Delta}$

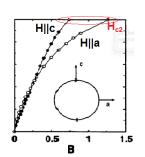
We need:
$$\frac{v_{F,e}^a}{v_{F,h}^a}$$
, $\frac{v_{F,e}^c}{v_{F,e}^a}$

- use the "virtual upper critical field" (see [Kasahara et al., 2007]) for the light hole band
- Correct for the size of gaps

$$\frac{\chi_{F,e}^{a}}{\chi_{F,h}^{a}} = \sqrt{\frac{H_{s}}{H_{c2}^{H||a}}} \frac{\Delta_{0,e}}{\Delta_{0,h}}$$



$$\frac{v_{F,e}^{c}}{v_{F,e}^{a}} = \frac{H_{c2}^{H||a}}{H_{c2}^{H||c}} \cdot 1.66$$



Fitting data

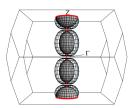
Let's apply this to data

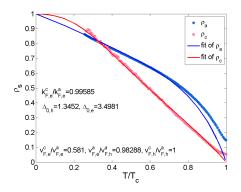
Parameters needed:

- Shape of FS: $\frac{k_{F,c}^{h}}{k_{F,a}^{h}}$, $\frac{k_{F,c}^{e}}{k_{F,a}^{e}}$
- Anisotropy of v_F for each FS
- Ratio of v_F of the 2 bands

Fitting parameters:

- Gapvalues Δ_0 (α -model)
- anisotropy of e-FS





TDO	Geometric Factors	and	Calibration

Fitting data

URu₂Si₂ Acknowledgements, Bibliography

And a different gap structure?

Try to find the nodel structure in a 2-band model with equal volume of the FS's <code>vspace10cm</code>

TDO	Geometric Factors and Calibration	

ρ,

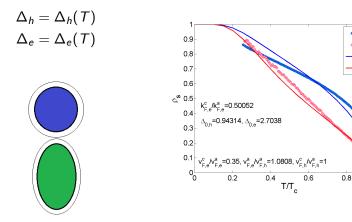
 $\rho_{\rm c}$

-fit of ρ_a -fit of ρ_a

Fitting data

And a different gap structure?

Try to find the nodel structure in a 2-band model with equal volume of the FS's Both isotropic s-wave

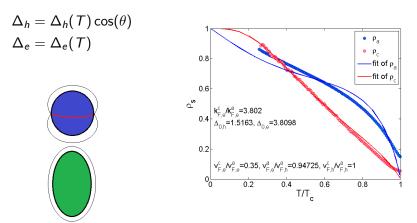


TDO	Geometric Factors and Calibration	

Fitting data

And a different gap structure?

Try to find the nodel structure in a 2-band model with equal volume of the FS's hole-FS: only line node, electron-FS: fully gapped

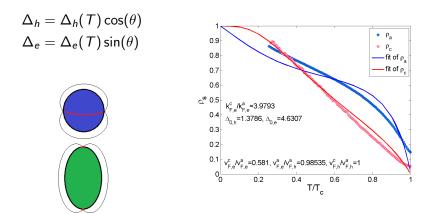


TDO	Geometric Factors	and	Calibration

Fitting data

And a different gap structure?

Try to find the nodel structure in a 2-band model with equal volume of the FS's hole-FS: line node, electron-FS: point nodes



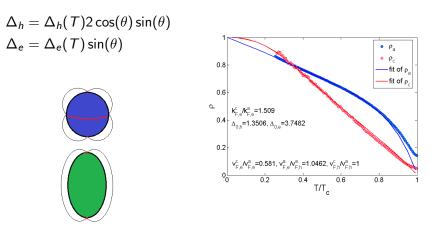
TDO	Geometric Factors	and	Calibration

Fitting data

And a different gap structure?

Try to find the nodel structure in a 2-band model with equal volume of the $\mathsf{FS's}$

hole-FS: line node and point nodes, electron FS: point nodes



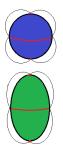
TDO	Geometric Factors and Calibration

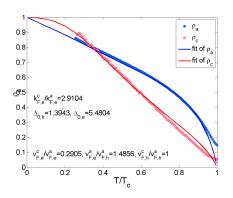
Fitting data

And a different gap structure?

Try to find the nodel structure in a 2-band model with equal volume of the FS's Both line node and point nodes

 $\Delta_h = \Delta_h(T) 2\sin(\theta) \cos(\theta)$ $\Delta_e = \Delta_e(T) 2\sin(\theta) \cos(\theta)$





TDO	Geometric Factors	and	Calibration

Fitting data

What about Fermi-liquid corrections?

TDO	Geometric Factors	and	Calibration

Fitting data

What about Fermi-liquid corrections?

Predicted behaviour: [Varma et al., 1986]

$$\lambda^{-2}(T) = \frac{\mu_0 n e^2}{m_d} \left[1 - \frac{(1 + F_1^s/3)Y(T)}{1 + (F_1^s/3)Y(T)} \right]$$

TDO	Geometric Factors	and	Calibration

Fitting data

What about Fermi-liquid corrections?

Predicted behaviour: [Varma et al., 1986]

$$\lambda^{-2}(T) = \frac{\mu_0 n e^2}{m_d} \left[1 - \frac{(1 + F_1^s/3)Y(T)}{1 + (F_1^s/3)Y(T)} \right]$$

- m_d : dynamic mass, for example from cyclotron resonance
- F_1^s Landau coefficient
- Y(T) is the Yosida function, $N(0)^{-1}\sum_k dn/dE_k$

TDO	Geometric Factors	and	Calibration

Fitting data

What about Fermi-liquid corrections?

Limiting behaviour: [Varma et al., 1986]

$$\lambda^{-2}(T) = rac{m}{m_d} \lambda_{BCS}^{-2}(T), \quad T o 0$$

 $\lambda^{-2}(T) = rac{m}{m^*} \lambda_{BCS}^{-2}(T), \quad T o T_c$

TDO	Geometric Factors	and	Calibration

Fitting data

What about Fermi-liquid corrections?

Limiting behaviour: [Varma et al., 1986]

$$\lambda^{-2}(T) = rac{m}{m_d} \lambda_{BCS}^{-2}(T), \quad T o 0$$

 $\lambda^{-2}(T) = rac{m}{m^*} \lambda_{BCS}^{-2}(T), \quad T o T_c$

- m_d: dynamic mass, for example from cyclotron resonance
- *m*^{*}: heavy mass, from transport measurements

TDO	Geometric Factors	and	Calibration

Fitting data

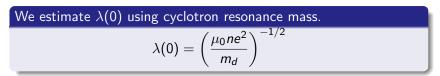
What about Fermi-liquid corrections?

Limiting behaviour: [Varma et al., 1986]

$$\lambda^{-2}(T) = rac{m}{m_d} \lambda_{BCS}^{-2}(T), \quad T o 0$$

 $\lambda^{-2}(T) = rac{m}{m^*} \lambda_{BCS}^{-2}(T), \quad T o T_c$

- m_d : dynamic mass, for example from cyclotron resonance
- *m*^{*}: heavy mass, from transport measurements



We get $\lambda_a(0) = 0.66 \mu m$ and $\lambda_c(0) = 0.5 \mu m$, smaller than $\lambda \approx 1 \mu m$ from μ SR and $\lambda_a(0) > \lambda_c(0)$ in contrast to H_{c1} -measurements.

TDO	Geometric Factors	and	Calibration

Fitting data

May Fermi-liquid corrections play a role?

$$\lambda^{-2}(T) = \frac{\mu_0 n e^2}{m_d} \left[1 - \frac{(1 + F_1^s/3)Y(T)}{1 + (F_1^s/3)Y(T)} \right]$$

Generalize this to include bandstructure (quite a long formula)

TDO	Geometric Factors	and	Calibration
	000000000000000		

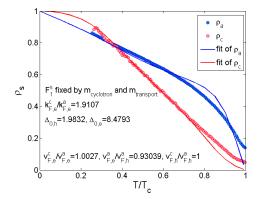
Fitting data

May Fermi-liquid corrections play a role?

$$\lambda^{-2}(T) = \frac{\mu_0 n e^2}{m_d} \left[1 - \frac{(1 + F_1^s/3)Y(T)}{1 + (F_1^s/3)Y(T)} \right]$$

Generalize this to include bandstructure (quite a long formula)

The F_1^s fixed by mass ratios m^*/m_d , all other parameters free



TDO	Geometric Factors	and	Calibration

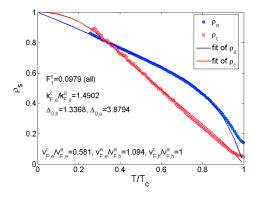
Fitting data

May Fermi-liquid corrections play a role?

$$\lambda^{-2}(T) = \frac{\mu_0 n e^2}{m_d} \left[1 - \frac{(1 + F_1^s/3)Y(T)}{1 + (F_1^s/3)Y(T)} \right]$$

Generalize this to include bandstructure (quite a long formula)

Fit F_1^s starting from 0



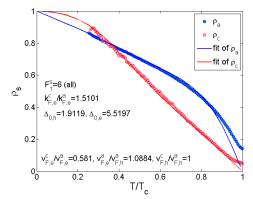
TDO	Geometric Factors	and	Calibration

Fitting data

May Fermi-liquid corrections play a role?

$$\lambda^{-2}(T) = \frac{\mu_0 n e^2}{m_d} \left[1 - \frac{(1 + F_1^s/3)Y(T)}{1 + (F_1^s/3)Y(T)} \right]$$

Generalize this to include bandstructure (quite a long formula) Set all $F_1^s = 6$



TDO	Geometric Factors and Calibration

Fitting data

TDO	Geometric Factors	and	Calibration

Fitting data

Some conclusions

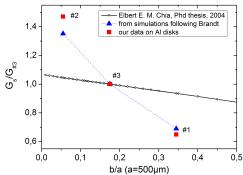
• The temperature dependent penetration depth can be measured accurately with TDO technique

TDO	Geometric Factors and Calibration	

Fitting data

Some conclusions

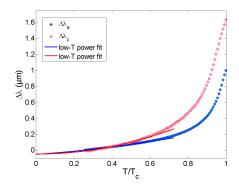
- The temperature dependent penetration depth can be measured accurately with TDO technique
- Estimating the geometrical factor is very difficult



Calibration factor

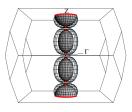
Fitting data

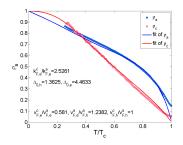
- The temperature dependent penetration depth can be measured accurately with TDO technique
- Estimating the geometrical factor is very difficult
- We can reliably extract the superfluid density $\rho_{\rm a}$ and $\rho_{\rm c}$ of ${\rm URu_2Si_2}$



Fitting data

- The temperature dependent penetration depth can be measured accurately with TDO technique
- Estimating the geometrical factor is very difficult
- We can reliably extract the superfluid density $\rho_{\rm a}$ and $\rho_{\rm c}$ of $\rm URu_2Si_2$
- The data can be reasonably well fitted by the two band model with $k_z(k_x + ik_y)$ gap symmetry of Kasahara et al., 2007





Fitting data

- The temperature dependent penetration depth can be measured accurately with TDO technique
- Estimating the geometrical factor is very difficult
- We can reliably extract the superfluid density ρ_{a} and ρ_{c} of $\rm URu_2Si_2$
- The data can be reasonably well fitted by the two band model with $k_z(k_x + ik_y)$ gap symmetry of Kasahara et al., 2007

Fitting data

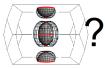
- The temperature dependent penetration depth can be measured accurately with TDO technique
- Estimating the geometrical factor is very difficult
- We can reliably extract the superfluid density ρ_{a} and ρ_{c} of $\rm URu_2Si_2$
- The data can be reasonably well fitted by the two band model with $k_z(k_x + ik_y)$ gap symmetry of Kasahara et al., 2007
- A gap structure with less nodes does not fit the data well
- FL-corrections possibly play a role in the T-dependance of λ , difficult to be sure

Fitting data

- The temperature dependent penetration depth can be measured accurately with TDO technique
- Estimating the geometrical factor is very difficult
- We can reliably extract the superfluid density ρ_{a} and ρ_{c} of $\rm URu_2Si_2$
- The data can be reasonably well fitted by the two band model with $k_z(k_x + ik_y)$ gap symmetry of Kasahara et al., 2007
- A gap structure with less nodes does not fit the data well
- FL-corrections possibly play a role in the T-dependance of λ , difficult to be sure
- Unknown Fermi-surface implies many difficulties.

Fitting data

- The temperature dependent penetration depth can be measured accurately with TDO technique
- Estimating the geometrical factor is very difficult
- We can reliably extract the superfluid density $\rho_{\rm a}$ and $\rho_{\rm c}$ of ${\rm URu_2Si_2}$
- The data can be reasonably well fitted by the two band model with $k_z(k_x + ik_y)$ gap symmetry of Kasahara et al., 2007
- A gap structure with less nodes does not fit the data well
- FL-corrections possibly play a role in the T-dependance of λ , difficult to be sure
- Unknown Fermi-surface implies many difficulties.



Geometric Factors and Calibration

Acknowledgements

Acknowledgements

- Y.Matsuda and T.Shibauchi and everybody for welcoming me here and for supporting me so much
- T.Shibauchi for all his support and all the paperwork
- K.Hashimoto and Katsumata for letting me share their experiment and for their numerous explanations
- All Matsuda-Lab. for letting me become part of them and for making english (-slides) presentations

Acknowledgements

- Y.Matsuda and T.Shibauchi and everybody for welcoming me here and for supporting me so much
- T.Shibauchi for all his support and all the paperwork
- K.Hashimoto and Katsumata for letting me share their experiment and for their numerous explanations
- All Matsuda-Lab. for letting me become part of them and for making english (-slides) presentations
- K.van der Beek for sending me here and for two years of real physics
- Ecole Polytechnique for providing framework

Acknowledgements

- Y.Matsuda and T.Shibauchi and everybody for welcoming me here and for supporting me so much
- T.Shibauchi for all his support and all the paperwork
- K.Hashimoto and Katsumata for letting me share their experiment and for their numerous explanations
- All Matsuda-Lab. for letting me become part of them and for making english (-slides) presentations
- K.van der Beek for sending me here and for two years of real physics
- Ecole Polytechnique for providing framework
- I very gratefully acknowledge
 - Generous financial support from the BIEP within the GCOE program of Kyoto university
 - Partly travel assistance from the chaire St.Gobain, Sciences des matériaux et surfaces

References I

- C.T. van Degrift. Modeling of tunnel diode oscillators. *Rev. Sci. Instrum.*, 52:712–717, 1981.
- R. Prozorov, R.W. Giannetta, A. Carrington, and F.M. Araujo-Moreira. Meissner-London state in superconductors of rectangular cross section in a perpendicular magnetic field. *Phys. Rev. B*, 62:115, 2000.
- E.M.E. Chia. *Penetration Depth Studies of Unconventional Superconductors*. PhD thesis, University of Illinoism at Urbana-Champaign, 2004.
- E.H. Brandt. Geometric edge barrier in the Shubnikov phase of type-II superconductors. J. Low T. Phys., 27:723, 2001a.
- J.A. Osborn. Demagnetizing factors of the general ellipsoid. *Phys. Rev.*, 67:351, 1945.

References II

- D.-X. Chen, J.A. Brug, and R.B. Goldfarb. Demagnetizing factors for cylinders. *IEEE Trans. Mag.*, 27:3601, 1991.
- E. Pardo, D-X. Chen, and A. Sanchez. Demagnetizing factors for completely shielded rectangular prisms. J.Appl.Phys., 96:5365, 2004.
- M. Tinkham. *Introduction to Superconductivity*. Dover Publications, 1996.
- R. Prozorov and R.W. Giannetta. Magnetic penetration depth in unconventional superconductors. *Superc. Sci. Tech.*, 19: R41–R67, 2006.
- E.H. Brandt and G.P. Miktik. Meissner-London currents in superconductors with rectangular cross section. *Phys. Rev. Lett.*, 85:4164, 2000.

References III

- E.H. Brandt. Theory of type-II superconductors with finite London penetration depth. *Phys. Rev. B*, 64:02505, 2001b.
- T.T.M. Palstra, A.A. Menovski, J. van der Berg, A.J. Dirkmaat, P.H. Kes, G.J. Nieuwenhuys, and J.A. Mydosh. Superconducting and magnetic transistions in the heavy-fermion system URu₂Si₂. *Phys. Rev. Lett.*, 55:2727, 1985.
- Y. Kasahara, T. Iwasawa, H. Shishido, T. Shibauchi, K. Behnia,
 Y. Haga, T.D. Matsuda, Y. Onuki, M. Sigrist, and Y. Matsuda.
 Exotic superconducting properties in the
 electron-hole-compensated heavy-fermion "semimetal" URu₂Si₂. *Phys. Rev. Lett.*, 99:116402, 2007.

References IV

- K. Yano, T. Sakakibara, T. Tayama, M. Yokoyama, H. Amitsuka, Y. Homma, P. Miranović, M. Ichioka, Y. Tsutsumi, and K. Machida. Field-angle-dependent specific heat measurements and gap determination of a heavy-fermion superconductor URu₂Si₂. *Phys. Rev. Lett.*, 100:017004, 2008.
- R. Okazaki, M. Shimozawa, H. Shishido, M. Konczykowski,
 Y. Haga, T.D. Matsuda, Y. Onuki, T. Shibauchi, and
 Y. Matsuda. Anomalous low-field diamagnetic response in the superconducting state of ultraclean URu₂Si₂. *arxiv*, 0909: .1075.v1, 2009.
- B.S. Chandrasekhar and D. Einzel. The superconducting penetration depth from the semiclassical model. *Ann. Physik*, 2: 535–546, 1993.

References V

- P. Miranović, N. Nakai, M. Ichioka, and K. Machida. Orientational field dependence of low-lying excitations in the mixed state of unconventional superconductors. *Phys. Rev. B*, 68:052501, 2001.
- C.M. Varma, K. Miyake, and S. Schmitt-Rink. London penetration depth of heavy-fermion superconductors. *Phys. Rev. Lett.*, 57: 626, 1986.

TDO	Geometric Factors and Calibration	URu ₂ Si ₂ Ackno 000000000000000000000000000000000000	owledgements, Bibliography